Cargando…
DeepREAL: a deep learning powered multi-scale modeling framework for predicting out-of-distribution ligand-induced GPCR activity
MOTIVATION: Drug discovery has witnessed intensive exploration of predictive modeling of drug–target physical interactions over two decades. However, a critical knowledge gap needs to be filled for correlating drug–target interactions with clinical outcomes: predicting genome-wide receptor activitie...
Autores principales: | Cai, Tian, Abbu, Kyra Alyssa, Liu, Yang, Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048666/ https://www.ncbi.nlm.nih.gov/pubmed/35274689 http://dx.doi.org/10.1093/bioinformatics/btac154 |
Ejemplares similares
-
Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study
por: Thomas, Morgan, et al.
Publicado: (2021) -
PRECOGx: exploring GPCR signaling mechanisms with deep protein representations
por: Matic, Marin, et al.
Publicado: (2022) -
pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures
por: Velloso, João Paulo L, et al.
Publicado: (2021) -
Deep-Framework: A Distributed, Scalable, and Edge-Oriented Framework for Real-Time Analysis of Video Streams
por: Sassu, Alessandro, et al.
Publicado: (2021) -
Improved GPCR ligands from nanobody tethering
por: Cheloha, Ross W., et al.
Publicado: (2020)