Cargando…

To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift

The connections between the non-equilibrium solvation dynamics upon optical transitions and the system's equilibrium fluctuations are explored in aqueous liquid. Linear response theory correlates time-dependent fluorescence with the equilibrium time correlation functions. In the previous work [...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaofang, Guo, Jirui, Li, Tanping, Wei, Zhiyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053704/
https://www.ncbi.nlm.nih.gov/pubmed/35517244
http://dx.doi.org/10.1039/d0ra01227k
_version_ 1784697029097684992
author Wang, Xiaofang
Guo, Jirui
Li, Tanping
Wei, Zhiyi
author_facet Wang, Xiaofang
Guo, Jirui
Li, Tanping
Wei, Zhiyi
author_sort Wang, Xiaofang
collection PubMed
description The connections between the non-equilibrium solvation dynamics upon optical transitions and the system's equilibrium fluctuations are explored in aqueous liquid. Linear response theory correlates time-dependent fluorescence with the equilibrium time correlation functions. In the previous work [T. Li, J. Chem. Theory Comput., 2017, 13, 1867], Stokes shift was explicitly decomposed into the contributions of various order time correlation functions on the excited state surface. Gaussian fluctuations of the solute–solvent interactions validate linear response theory. Correspondingly, the deviation of the Gaussian statistics causes the inefficiency of linear response evaluation. The above mechanism is thoroughly tested in this study. By employing molecular simulations, multiple non-equilibrium processes, not necessarily initiated from the ground state equilibrium minimum, were examined for tryptophan. Both the success and failure of linear response theory are found for this simple system and the mechanism is analyzed. These observations, assisted by the width dynamics, the initial state linear response approach, and the variation of the solvation structures, integrally verify the virtue of the excited state Gaussian statistics on the dynamics of Stokes shift.
format Online
Article
Text
id pubmed-9053704
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90537042022-05-04 To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift Wang, Xiaofang Guo, Jirui Li, Tanping Wei, Zhiyi RSC Adv Chemistry The connections between the non-equilibrium solvation dynamics upon optical transitions and the system's equilibrium fluctuations are explored in aqueous liquid. Linear response theory correlates time-dependent fluorescence with the equilibrium time correlation functions. In the previous work [T. Li, J. Chem. Theory Comput., 2017, 13, 1867], Stokes shift was explicitly decomposed into the contributions of various order time correlation functions on the excited state surface. Gaussian fluctuations of the solute–solvent interactions validate linear response theory. Correspondingly, the deviation of the Gaussian statistics causes the inefficiency of linear response evaluation. The above mechanism is thoroughly tested in this study. By employing molecular simulations, multiple non-equilibrium processes, not necessarily initiated from the ground state equilibrium minimum, were examined for tryptophan. Both the success and failure of linear response theory are found for this simple system and the mechanism is analyzed. These observations, assisted by the width dynamics, the initial state linear response approach, and the variation of the solvation structures, integrally verify the virtue of the excited state Gaussian statistics on the dynamics of Stokes shift. The Royal Society of Chemistry 2020-05-13 /pmc/articles/PMC9053704/ /pubmed/35517244 http://dx.doi.org/10.1039/d0ra01227k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Wang, Xiaofang
Guo, Jirui
Li, Tanping
Wei, Zhiyi
To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title_full To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title_fullStr To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title_full_unstemmed To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title_short To unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence Stokes shift
title_sort to unravel the connection between the non-equilibrium and equilibrium solvation dynamics of tryptophan: success and failure of the linear response theory of fluorescence stokes shift
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053704/
https://www.ncbi.nlm.nih.gov/pubmed/35517244
http://dx.doi.org/10.1039/d0ra01227k
work_keys_str_mv AT wangxiaofang tounraveltheconnectionbetweenthenonequilibriumandequilibriumsolvationdynamicsoftryptophansuccessandfailureofthelinearresponsetheoryoffluorescencestokesshift
AT guojirui tounraveltheconnectionbetweenthenonequilibriumandequilibriumsolvationdynamicsoftryptophansuccessandfailureofthelinearresponsetheoryoffluorescencestokesshift
AT litanping tounraveltheconnectionbetweenthenonequilibriumandequilibriumsolvationdynamicsoftryptophansuccessandfailureofthelinearresponsetheoryoffluorescencestokesshift
AT weizhiyi tounraveltheconnectionbetweenthenonequilibriumandequilibriumsolvationdynamicsoftryptophansuccessandfailureofthelinearresponsetheoryoffluorescencestokesshift