Cargando…
The 1α-hydroxy-A-rings of norditerpenoid alkaloids are twisted-boat conformers
The skeletal conformations of naturally occurring norditerpenoid alkaloids fix their substituent functional groups in space, thereby directing their bioactivities. Solution conformations of the A-rings of 4 selected norditerpenoid alkaloid free bases: mesaconitine, karacoline (karakoline), condelphi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053968/ https://www.ncbi.nlm.nih.gov/pubmed/35518334 http://dx.doi.org/10.1039/d0ra03811c |
Sumario: | The skeletal conformations of naturally occurring norditerpenoid alkaloids fix their substituent functional groups in space, thereby directing their bioactivities. Solution conformations of the A-rings of 4 selected norditerpenoid alkaloid free bases: mesaconitine, karacoline (karakoline), condelphine, and neoline (bullatine B), were analysed by NMR spectroscopy and single-crystal X-ray crystallography. They adopt twisted-chair, twisted-boat, twisted-boat, twisted-boat conformations, respectively. That the A-ring is stabilised in a boat conformer by an intramolecular H-bond from 1α-OH to the N-ethyl tertiary amine is also confirmed in the condelphine single crystal data. The conformations are a result of through-space repulsion between 12-H(e′) and atoms attached to C1 (in the equatorial positions). This causes the A-rings with 1α-OR always to be twisted whether in a chair or a boat conformation. The impact of these studies is in providing a detailed understanding of the shape of the A-ring of these important biologically active natural product alkaloids. |
---|