Cargando…
A bow-free freestanding GaN wafer
For applications as high-brightness light-emitting-diodes, a bow-free freestanding gallium nitride (GaN) wafer 2 inch in diameter and ∼185 μm in thickness was fabricated by process-designing pit and mirror GaN layers grown via hydride-vapor-phase epitaxy, laser lift-off, N-face polishing of the pit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054521/ https://www.ncbi.nlm.nih.gov/pubmed/35516654 http://dx.doi.org/10.1039/d0ra01024c |
Sumario: | For applications as high-brightness light-emitting-diodes, a bow-free freestanding gallium nitride (GaN) wafer 2 inch in diameter and ∼185 μm in thickness was fabricated by process-designing pit and mirror GaN layers grown via hydride-vapor-phase epitaxy, laser lift-off, N-face polishing of the pit GaN layer, and three-step polishing of the mirror GaN layer using 3.0 μm-, 0.5 μm-, and 50 nm-diameter diamond abrasives and by inductively-coupled-plasma reactive-ion etching. The considerably large concave shape of the GaN wafer could be decreased by controlling the removal amount of the Ga-face mirror layer during the first step of the polishing process, which approached a bow-free shape or changed with further polishing; this well correlated with the residual stress of the polished GaN wafer. |
---|