Cargando…
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a refere...
Autores principales: | Miller, Brendan F., Huang, Feiyang, Atta, Lyla, Sahoo, Arpan, Fan, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055051/ https://www.ncbi.nlm.nih.gov/pubmed/35487922 http://dx.doi.org/10.1038/s41467-022-30033-z |
Ejemplares similares
-
Computational challenges and opportunities in spatially resolved transcriptomic data analysis
por: Atta, Lyla, et al.
Publicado: (2021) -
Gene count normalization in single-cell imaging-based spatially resolved transcriptomics
por: Atta, Lyla, et al.
Publicado: (2023) -
RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics
por: Singh, Roopali, et al.
Publicado: (2023) -
SD(2): spatially resolved transcriptomics deconvolution through integration of dropout and spatial information
por: Li, Haoyang, et al.
Publicado: (2022) -
Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
por: Zhou, Zixiang, et al.
Publicado: (2023)