Cargando…
Universal machine learning framework for defect predictions in zinc blende semiconductors
We develop a framework powered by machine learning (ML) and high-throughput density functional theory (DFT) computations for the prediction and screening of functional impurities in groups IV, III–V, and II–VI zinc blende semiconductors. Elements spanning the length and breadth of the periodic table...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058924/ https://www.ncbi.nlm.nih.gov/pubmed/35510195 http://dx.doi.org/10.1016/j.patter.2022.100450 |