Cargando…
A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data
BACKGROUND: Prior work has shown that combining bootstrap imputation with tree-based machine learning variable selection methods can provide good performances achievable on fully observed data when covariate and outcome data are missing at random (MAR). This approach however is computationally expen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066834/ https://www.ncbi.nlm.nih.gov/pubmed/35508974 http://dx.doi.org/10.1186/s12874-022-01608-7 |