Cargando…
A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data
BACKGROUND: Prior work has shown that combining bootstrap imputation with tree-based machine learning variable selection methods can provide good performances achievable on fully observed data when covariate and outcome data are missing at random (MAR). This approach however is computationally expen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066834/ https://www.ncbi.nlm.nih.gov/pubmed/35508974 http://dx.doi.org/10.1186/s12874-022-01608-7 |
_version_ | 1784699878373326848 |
---|---|
author | Lin, Jung-Yi Joyce Hu, Liangyuan Huang, Chuyue Jiayi, Ji Lawrence, Steven Govindarajulu, Usha |
author_facet | Lin, Jung-Yi Joyce Hu, Liangyuan Huang, Chuyue Jiayi, Ji Lawrence, Steven Govindarajulu, Usha |
author_sort | Lin, Jung-Yi Joyce |
collection | PubMed |
description | BACKGROUND: Prior work has shown that combining bootstrap imputation with tree-based machine learning variable selection methods can provide good performances achievable on fully observed data when covariate and outcome data are missing at random (MAR). This approach however is computationally expensive, especially on large-scale datasets. METHODS: We propose an inference-based method, called RR-BART, which leverages the likelihood-based Bayesian machine learning technique, Bayesian additive regression trees, and uses Rubin’s rule to combine the estimates and variances of the variable importance measures on multiply imputed datasets for variable selection in the presence of MAR data. We conduct a representative simulation study to investigate the practical operating characteristics of RR-BART, and compare it with the bootstrap imputation based methods. We further demonstrate the methods via a case study of risk factors for 3-year incidence of metabolic syndrome among middle-aged women using data from the Study of Women’s Health Across the Nation (SWAN). RESULTS: The simulation study suggests that even in complex conditions of nonlinearity and nonadditivity with a large percentage of missingness, RR-BART can reasonably recover both prediction and variable selection performances, achievable on the fully observed data. RR-BART provides the best performance that the bootstrap imputation based methods can achieve with the optimal selection threshold value. In addition, RR-BART demonstrates a substantially stronger ability of detecting discrete predictors. Furthermore, RR-BART offers substantial computational savings. When implemented on the SWAN data, RR-BART adds to the literature by selecting a set of predictors that had been less commonly identified as risk factors but had substantial biological justifications. CONCLUSION: The proposed variable selection method for MAR data, RR-BART, offers both computational efficiency and good operating characteristics and is utilitarian in large-scale healthcare database studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s12874-022-01608-7). |
format | Online Article Text |
id | pubmed-9066834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-90668342022-05-04 A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data Lin, Jung-Yi Joyce Hu, Liangyuan Huang, Chuyue Jiayi, Ji Lawrence, Steven Govindarajulu, Usha BMC Med Res Methodol Research BACKGROUND: Prior work has shown that combining bootstrap imputation with tree-based machine learning variable selection methods can provide good performances achievable on fully observed data when covariate and outcome data are missing at random (MAR). This approach however is computationally expensive, especially on large-scale datasets. METHODS: We propose an inference-based method, called RR-BART, which leverages the likelihood-based Bayesian machine learning technique, Bayesian additive regression trees, and uses Rubin’s rule to combine the estimates and variances of the variable importance measures on multiply imputed datasets for variable selection in the presence of MAR data. We conduct a representative simulation study to investigate the practical operating characteristics of RR-BART, and compare it with the bootstrap imputation based methods. We further demonstrate the methods via a case study of risk factors for 3-year incidence of metabolic syndrome among middle-aged women using data from the Study of Women’s Health Across the Nation (SWAN). RESULTS: The simulation study suggests that even in complex conditions of nonlinearity and nonadditivity with a large percentage of missingness, RR-BART can reasonably recover both prediction and variable selection performances, achievable on the fully observed data. RR-BART provides the best performance that the bootstrap imputation based methods can achieve with the optimal selection threshold value. In addition, RR-BART demonstrates a substantially stronger ability of detecting discrete predictors. Furthermore, RR-BART offers substantial computational savings. When implemented on the SWAN data, RR-BART adds to the literature by selecting a set of predictors that had been less commonly identified as risk factors but had substantial biological justifications. CONCLUSION: The proposed variable selection method for MAR data, RR-BART, offers both computational efficiency and good operating characteristics and is utilitarian in large-scale healthcare database studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s12874-022-01608-7). BioMed Central 2022-05-04 /pmc/articles/PMC9066834/ /pubmed/35508974 http://dx.doi.org/10.1186/s12874-022-01608-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Lin, Jung-Yi Joyce Hu, Liangyuan Huang, Chuyue Jiayi, Ji Lawrence, Steven Govindarajulu, Usha A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title | A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title_full | A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title_fullStr | A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title_full_unstemmed | A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title_short | A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
title_sort | flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066834/ https://www.ncbi.nlm.nih.gov/pubmed/35508974 http://dx.doi.org/10.1186/s12874-022-01608-7 |
work_keys_str_mv | AT linjungyijoyce aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT huliangyuan aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT huangchuyue aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT jiayiji aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT lawrencesteven aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT govindarajuluusha aflexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT linjungyijoyce flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT huliangyuan flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT huangchuyue flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT jiayiji flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT lawrencesteven flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata AT govindarajuluusha flexibleapproachforvariableselectioninlargescalehealthcaredatabasestudieswithmissingcovariateandoutcomedata |