Cargando…
A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data
BACKGROUND: Prior work has shown that combining bootstrap imputation with tree-based machine learning variable selection methods can provide good performances achievable on fully observed data when covariate and outcome data are missing at random (MAR). This approach however is computationally expen...
Autores principales: | Lin, Jung-Yi Joyce, Hu, Liangyuan, Huang, Chuyue, Jiayi, Ji, Lawrence, Steven, Govindarajulu, Usha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066834/ https://www.ncbi.nlm.nih.gov/pubmed/35508974 http://dx.doi.org/10.1186/s12874-022-01608-7 |
Ejemplares similares
-
A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations
por: Hu, Liangyuan, et al.
Publicado: (2022) -
Logistic regression with missing values in the covariates
por: Vach, Werner
Publicado: (1994) -
Missing covariates in competing risks analysis
por: Bartlett, Jonathan W., et al.
Publicado: (2016) -
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013)