Cargando…

α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling

Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Yexian, Zhu, Canjun, Wang, Yongliang, Sun, Jia, Feng, Jinlong, Ma, Zewei, Li, Penglin, Peng, Wentong, Yin, Cong, Xu, Guli, Xu, Pingwen, Jiang, Yuwei, Jiang, Qingyan, Shu, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067931/
https://www.ncbi.nlm.nih.gov/pubmed/35507647
http://dx.doi.org/10.1126/sciadv.abn2879
_version_ 1784700119235428352
author Yuan, Yexian
Zhu, Canjun
Wang, Yongliang
Sun, Jia
Feng, Jinlong
Ma, Zewei
Li, Penglin
Peng, Wentong
Yin, Cong
Xu, Guli
Xu, Pingwen
Jiang, Yuwei
Jiang, Qingyan
Shu, Gang
author_facet Yuan, Yexian
Zhu, Canjun
Wang, Yongliang
Sun, Jia
Feng, Jinlong
Ma, Zewei
Li, Penglin
Peng, Wentong
Yin, Cong
Xu, Guli
Xu, Pingwen
Jiang, Yuwei
Jiang, Qingyan
Shu, Gang
author_sort Yuan, Yexian
collection PubMed
description Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)–dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.
format Online
Article
Text
id pubmed-9067931
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-90679312022-05-13 α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling Yuan, Yexian Zhu, Canjun Wang, Yongliang Sun, Jia Feng, Jinlong Ma, Zewei Li, Penglin Peng, Wentong Yin, Cong Xu, Guli Xu, Pingwen Jiang, Yuwei Jiang, Qingyan Shu, Gang Sci Adv Biomedicine and Life Sciences Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)–dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule. American Association for the Advancement of Science 2022-05-04 /pmc/articles/PMC9067931/ /pubmed/35507647 http://dx.doi.org/10.1126/sciadv.abn2879 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Yuan, Yexian
Zhu, Canjun
Wang, Yongliang
Sun, Jia
Feng, Jinlong
Ma, Zewei
Li, Penglin
Peng, Wentong
Yin, Cong
Xu, Guli
Xu, Pingwen
Jiang, Yuwei
Jiang, Qingyan
Shu, Gang
α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title_full α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title_fullStr α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title_full_unstemmed α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title_short α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
title_sort α-ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067931/
https://www.ncbi.nlm.nih.gov/pubmed/35507647
http://dx.doi.org/10.1126/sciadv.abn2879
work_keys_str_mv AT yuanyexian aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT zhucanjun aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT wangyongliang aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT sunjia aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT fengjinlong aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT mazewei aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT lipenglin aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT pengwentong aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT yincong aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT xuguli aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT xupingwen aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT jiangyuwei aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT jiangqingyan aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling
AT shugang aketoglutaricacidameliorateshyperglycemiaindiabetesbyinhibitinghepaticgluconeogenesisviaserpina1esignaling