Cargando…
Vertical semiconductor deep ultraviolet light emitting diodes on a nanowire-assisted aluminum nitride buffer layer
Vertical light-emitting diodes (LEDs) have many advantages such as uniform current injection, excellent scalability of the chip size, and simple packaging process. Hitherto, however, technologically important semiconductor aluminum gallium nitride (AlGaN) deep ultraviolet (UV) LEDs are mainly throug...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068717/ https://www.ncbi.nlm.nih.gov/pubmed/35508615 http://dx.doi.org/10.1038/s41598-022-11246-0 |
Sumario: | Vertical light-emitting diodes (LEDs) have many advantages such as uniform current injection, excellent scalability of the chip size, and simple packaging process. Hitherto, however, technologically important semiconductor aluminum gallium nitride (AlGaN) deep ultraviolet (UV) LEDs are mainly through lateral injection. Herein, we demonstrate a new and practical path for vertical AlGaN deep UV LEDs, which exploits a thin AlN buffer layer formed on a nanowire-based template on silicon (Si). Such a buffer layer enables in situ formation of vertical AlGaN deep UV LEDs on Si. Near Lambertian emission pattern is measured from the top surface. The decent reflectivity of Si in the deep UV range makes such a configuration a viable low-cost solution for vertical AlGaN deep UV LEDs. More importantly, the use of such a thin AlN buffer layer can allow an easy transfer of device structures to other carrier wafers for vertical AlGaN deep UV LEDs with ultimately high electrical and optical performance. |
---|