Cargando…
Optimal Treatment Selection in Sequential Systemic and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a Patient-Physician Digital Twin Dyad
BACKGROUND: Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step. OBJECTIVE: We aim to optimize the multistep treatment of patients with head and neck cancer and pred...
Autores principales: | Tardini, Elisa, Zhang, Xinhua, Canahuate, Guadalupe, Wentzel, Andrew, Mohamed, Abdallah S R, Van Dijk, Lisanne, Fuller, Clifton D, Marai, G Elisabeta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069283/ https://www.ncbi.nlm.nih.gov/pubmed/35442211 http://dx.doi.org/10.2196/29455 |
Ejemplares similares
-
Multi-organ spatial stratification of 3-D dose distributions improves risk prediction of long-term self-reported severe symptoms in oropharyngeal cancer patients receiving radiotherapy: development of a pre-treatment decision support tool
por: Wentzel, Andrew, et al.
Publicado: (2023) -
Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features
por: Patel, Harsh, et al.
Publicado: (2021) -
Clustering of Largely Right-Censored Oropharyngeal Head and Neck Cancer Patients for Discriminative Groupings to Improve Outcome Prediction
por: Tosado, Joel, et al.
Publicado: (2020) -
Head and neck cancer predictive risk estimator to determine control and therapeutic outcomes of radiotherapy (HNC-PREDICTOR): development, international multi-institutional validation, and web implementation of clinic-ready model-based risk stratification for head and neck cancer
por: van Dijk, Lisanne V., et al.
Publicado: (2023) -
Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network
por: Taku, Nicolette, et al.
Publicado: (2022)