Cargando…
Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base
Modern inelastic X-ray spectrometers employ curved, bent and diced analyzers to capture sufficiently large solid angles of radially emitted scattered radiation emanating from the sample. Fabricating these intricate analyzers, especially when a high energy resolution of a few millielectronvolts is re...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070708/ https://www.ncbi.nlm.nih.gov/pubmed/35511007 http://dx.doi.org/10.1107/S1600577522001886 |
_version_ | 1784700697948717056 |
---|---|
author | Said, Ayman H. Kim, Jung Ho Aran, Emily K. Gog, Thomas |
author_facet | Said, Ayman H. Kim, Jung Ho Aran, Emily K. Gog, Thomas |
author_sort | Said, Ayman H. |
collection | PubMed |
description | Modern inelastic X-ray spectrometers employ curved, bent and diced analyzers to capture sufficiently large solid angles of radially emitted scattered radiation emanating from the sample. Fabricating these intricate analyzers, especially when a high energy resolution of a few millielectronvolts is required, is very time-consuming, expensive and often a hit-or-miss affair. A novel fabrication technique is introduced, utilizing a concave-spherical, microporous aluminium base to hold an assembly of a thin glass substrate with a diced crystal wafer bonded to it. Under uniform vacuum forces, the glass substrate is drawn into the aluminium base, achieving the desired bending radius, while dicing of the diffracting crystal layer prevents bending strain from being imposed on the individual crystal pixels. This technique eliminates the need for permanently bonding the crystal assembly to the concave lens, offering the opportunity for correcting figure errors, avoiding long-term degradation of the permanent bond, and making both lens and crystal reusable. Process and material costs are thus substantially decreased. Two analyzers, Si(844) and Ge(337) with intrinsic resolutions of 14.6 meV and 36.5 meV, respectively, were produced in this fashion and characterized in resonant inelastic X-ray scattering (RIXS) measurements. The achieved overall energy resolutions for both analyzers were 29.4 meV for Si(844) and 56.6 meV for Ge(337). Although the RIXS technique is veru sensitive to analyzer imperfections, the analyzers were found to be equal, if not superior, in quality to their traditional, permanently bonded counterparts. |
format | Online Article Text |
id | pubmed-9070708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-90707082022-05-10 Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base Said, Ayman H. Kim, Jung Ho Aran, Emily K. Gog, Thomas J Synchrotron Radiat Research Papers Modern inelastic X-ray spectrometers employ curved, bent and diced analyzers to capture sufficiently large solid angles of radially emitted scattered radiation emanating from the sample. Fabricating these intricate analyzers, especially when a high energy resolution of a few millielectronvolts is required, is very time-consuming, expensive and often a hit-or-miss affair. A novel fabrication technique is introduced, utilizing a concave-spherical, microporous aluminium base to hold an assembly of a thin glass substrate with a diced crystal wafer bonded to it. Under uniform vacuum forces, the glass substrate is drawn into the aluminium base, achieving the desired bending radius, while dicing of the diffracting crystal layer prevents bending strain from being imposed on the individual crystal pixels. This technique eliminates the need for permanently bonding the crystal assembly to the concave lens, offering the opportunity for correcting figure errors, avoiding long-term degradation of the permanent bond, and making both lens and crystal reusable. Process and material costs are thus substantially decreased. Two analyzers, Si(844) and Ge(337) with intrinsic resolutions of 14.6 meV and 36.5 meV, respectively, were produced in this fashion and characterized in resonant inelastic X-ray scattering (RIXS) measurements. The achieved overall energy resolutions for both analyzers were 29.4 meV for Si(844) and 56.6 meV for Ge(337). Although the RIXS technique is veru sensitive to analyzer imperfections, the analyzers were found to be equal, if not superior, in quality to their traditional, permanently bonded counterparts. International Union of Crystallography 2022-04-01 /pmc/articles/PMC9070708/ /pubmed/35511007 http://dx.doi.org/10.1107/S1600577522001886 Text en © Said, Kim, Aran and Gog 2022 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Said, Ayman H. Kim, Jung Ho Aran, Emily K. Gog, Thomas Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title | Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title_full | Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title_fullStr | Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title_full_unstemmed | Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title_short | Novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
title_sort | novel fabrication technique for high-resolution spherical crystal analyzers using a microporous aluminium base |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070708/ https://www.ncbi.nlm.nih.gov/pubmed/35511007 http://dx.doi.org/10.1107/S1600577522001886 |
work_keys_str_mv | AT saidaymanh novelfabricationtechniqueforhighresolutionsphericalcrystalanalyzersusingamicroporousaluminiumbase AT kimjungho novelfabricationtechniqueforhighresolutionsphericalcrystalanalyzersusingamicroporousaluminiumbase AT aranemilyk novelfabricationtechniqueforhighresolutionsphericalcrystalanalyzersusingamicroporousaluminiumbase AT gogthomas novelfabricationtechniqueforhighresolutionsphericalcrystalanalyzersusingamicroporousaluminiumbase |