Cargando…
Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073063/ https://www.ncbi.nlm.nih.gov/pubmed/35531141 http://dx.doi.org/10.1016/j.sjbs.2021.12.036 |
_version_ | 1784701202717474816 |
---|---|
author | El-Zehery, Hoda R.A. Zaghloul, Rashed A. Abdel-Rahman, Hany M. Salem, Ahmed A. El-Dougdoug, K.A. |
author_facet | El-Zehery, Hoda R.A. Zaghloul, Rashed A. Abdel-Rahman, Hany M. Salem, Ahmed A. El-Dougdoug, K.A. |
author_sort | El-Zehery, Hoda R.A. |
collection | PubMed |
description | Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100(−1) ml and against E. coli O157:H7 with an MIC of 350–500 μl 100(−1) ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100(−1) ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100(−1) ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains. |
format | Online Article Text |
id | pubmed-9073063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90730632022-05-07 Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes El-Zehery, Hoda R.A. Zaghloul, Rashed A. Abdel-Rahman, Hany M. Salem, Ahmed A. El-Dougdoug, K.A. Saudi J Biol Sci Original Article Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100(−1) ml and against E. coli O157:H7 with an MIC of 350–500 μl 100(−1) ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100(−1) ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100(−1) ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains. Elsevier 2022-04 2021-12-17 /pmc/articles/PMC9073063/ /pubmed/35531141 http://dx.doi.org/10.1016/j.sjbs.2021.12.036 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article El-Zehery, Hoda R.A. Zaghloul, Rashed A. Abdel-Rahman, Hany M. Salem, Ahmed A. El-Dougdoug, K.A. Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title | Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title_full | Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title_fullStr | Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title_full_unstemmed | Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title_short | Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes |
title_sort | novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: e. coli o157:h7 and listeria monocytogenes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073063/ https://www.ncbi.nlm.nih.gov/pubmed/35531141 http://dx.doi.org/10.1016/j.sjbs.2021.12.036 |
work_keys_str_mv | AT elzeheryhodara novelstrategiesofessentialoilschitosanandnanochitosanforinhibitionofmultidrugresistantecolio157h7andlisteriamonocytogenes AT zaghloulrasheda novelstrategiesofessentialoilschitosanandnanochitosanforinhibitionofmultidrugresistantecolio157h7andlisteriamonocytogenes AT abdelrahmanhanym novelstrategiesofessentialoilschitosanandnanochitosanforinhibitionofmultidrugresistantecolio157h7andlisteriamonocytogenes AT salemahmeda novelstrategiesofessentialoilschitosanandnanochitosanforinhibitionofmultidrugresistantecolio157h7andlisteriamonocytogenes AT eldougdougka novelstrategiesofessentialoilschitosanandnanochitosanforinhibitionofmultidrugresistantecolio157h7andlisteriamonocytogenes |