Cargando…
Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability
BACKGROUND: Diabetes is known to accelerate atherosclerosis and increase plaque instability. However, there has been a lack of suitable animal models to study the effect of diabetes on plaque instability. We hypothesized that the tandem stenosis mouse model, which reflects plaque instability/rupture...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075188/ https://www.ncbi.nlm.nih.gov/pubmed/34970931 http://dx.doi.org/10.1161/JAHA.121.022761 |
_version_ | 1784701624766169088 |
---|---|
author | Chen, Yung‐Chih Jandeleit‐Dahm, Karin Peter, Karlheinz |
author_facet | Chen, Yung‐Chih Jandeleit‐Dahm, Karin Peter, Karlheinz |
author_sort | Chen, Yung‐Chih |
collection | PubMed |
description | BACKGROUND: Diabetes is known to accelerate atherosclerosis and increase plaque instability. However, there has been a lack of suitable animal models to study the effect of diabetes on plaque instability. We hypothesized that the tandem stenosis mouse model, which reflects plaque instability/rupture as seen in patients, can be applied to study the effects of diabetes and respective therapeutics on plaque instability/rupture. METHODS AND RESULTS: ApoE(−/−) mice at 7 weeks of age were rendered diabetic with streptozotocin and 5 weeks later were surgically subjected to tandem stenosis in the right carotid artery and fed with a high‐fat diet for 7 weeks. As a promising new antidiabetic drug class, a sodium glucose co‐transporter 2 inhibitor was tested in this new model. Diabetic mice showed an increase in the size of unstable atherosclerotic plaques and in the plaque instability markers MCP‐1, CD68, and necrotic core size. Mice treated with dapagliflozin demonstrated attenuated glucose and triglyceride levels. Importantly, these mice demonstrated plaque stabilization with enhanced collagen accumulation, increased fibrosis, increased cap‐to‐lesion height ratios, and significant upregulation of the vasculoprotective NADPH oxidase 4 expression. CONCLUSIONS: The tandem stenosis mouse model in combination with the application of streptozotocin represents a highly suitable and unique mouse model for studying plaque destabilization under diabetic conditions. Furthermore, for the first time, we provide evidence of plaque‐stabilizing effects of sodium‐glucose co‐transporter 2 inhibitor. Our data also suggest that this newly developed mouse model is an attractive preclinical tool for testing antidiabetic drugs for the highly sought‐after potential to stabilize atherosclerotic plaques. |
format | Online Article Text |
id | pubmed-9075188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90751882022-05-10 Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability Chen, Yung‐Chih Jandeleit‐Dahm, Karin Peter, Karlheinz J Am Heart Assoc Brief Communication BACKGROUND: Diabetes is known to accelerate atherosclerosis and increase plaque instability. However, there has been a lack of suitable animal models to study the effect of diabetes on plaque instability. We hypothesized that the tandem stenosis mouse model, which reflects plaque instability/rupture as seen in patients, can be applied to study the effects of diabetes and respective therapeutics on plaque instability/rupture. METHODS AND RESULTS: ApoE(−/−) mice at 7 weeks of age were rendered diabetic with streptozotocin and 5 weeks later were surgically subjected to tandem stenosis in the right carotid artery and fed with a high‐fat diet for 7 weeks. As a promising new antidiabetic drug class, a sodium glucose co‐transporter 2 inhibitor was tested in this new model. Diabetic mice showed an increase in the size of unstable atherosclerotic plaques and in the plaque instability markers MCP‐1, CD68, and necrotic core size. Mice treated with dapagliflozin demonstrated attenuated glucose and triglyceride levels. Importantly, these mice demonstrated plaque stabilization with enhanced collagen accumulation, increased fibrosis, increased cap‐to‐lesion height ratios, and significant upregulation of the vasculoprotective NADPH oxidase 4 expression. CONCLUSIONS: The tandem stenosis mouse model in combination with the application of streptozotocin represents a highly suitable and unique mouse model for studying plaque destabilization under diabetic conditions. Furthermore, for the first time, we provide evidence of plaque‐stabilizing effects of sodium‐glucose co‐transporter 2 inhibitor. Our data also suggest that this newly developed mouse model is an attractive preclinical tool for testing antidiabetic drugs for the highly sought‐after potential to stabilize atherosclerotic plaques. John Wiley and Sons Inc. 2021-12-31 /pmc/articles/PMC9075188/ /pubmed/34970931 http://dx.doi.org/10.1161/JAHA.121.022761 Text en © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Brief Communication Chen, Yung‐Chih Jandeleit‐Dahm, Karin Peter, Karlheinz Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title | Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title_full | Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title_fullStr | Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title_full_unstemmed | Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title_short | Sodium‐Glucose Co‐Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes‐Induced Atherosclerotic Plaque Instability |
title_sort | sodium‐glucose co‐transporter 2 (sglt2) inhibitor dapagliflozin stabilizes diabetes‐induced atherosclerotic plaque instability |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075188/ https://www.ncbi.nlm.nih.gov/pubmed/34970931 http://dx.doi.org/10.1161/JAHA.121.022761 |
work_keys_str_mv | AT chenyungchih sodiumglucosecotransporter2sglt2inhibitordapagliflozinstabilizesdiabetesinducedatheroscleroticplaqueinstability AT jandeleitdahmkarin sodiumglucosecotransporter2sglt2inhibitordapagliflozinstabilizesdiabetesinducedatheroscleroticplaqueinstability AT peterkarlheinz sodiumglucosecotransporter2sglt2inhibitordapagliflozinstabilizesdiabetesinducedatheroscleroticplaqueinstability |