Cargando…
Multipurposing CARs: Same engine, different vehicles
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077369/ https://www.ncbi.nlm.nih.gov/pubmed/35151842 http://dx.doi.org/10.1016/j.ymthe.2022.02.012 |
Sumario: | T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient’s T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases. |
---|