Cargando…
Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors
In the study presented herein, 4-(1H-indol-3-yl)butanoic acid (1) was sequentially transformed in the first phase into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3) and 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4) as a nucleophile. In the second phase, variou...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082783/ https://www.ncbi.nlm.nih.gov/pubmed/35541970 http://dx.doi.org/10.1039/c8ra04987d |
_version_ | 1784703280045096960 |
---|---|
author | Nazir, Majid Abbasi, Muhammad Athar Aziz-ur-Rehman, Siddiqui, Sabahat Zahra Raza, Hussain Hassan, Mubashir Ali Shah, Syed Adnan Shahid, Muhammad Seo, Sung-Yum |
author_facet | Nazir, Majid Abbasi, Muhammad Athar Aziz-ur-Rehman, Siddiqui, Sabahat Zahra Raza, Hussain Hassan, Mubashir Ali Shah, Syed Adnan Shahid, Muhammad Seo, Sung-Yum |
author_sort | Nazir, Majid |
collection | PubMed |
description | In the study presented herein, 4-(1H-indol-3-yl)butanoic acid (1) was sequentially transformed in the first phase into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3) and 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4) as a nucleophile. In the second phase, various electrophiles were synthesized by reacting substituted-anilines, 5a–j, with 4-chlorobutanoyl chloride (6) to afford 4-chloro-N-(substituted-phenyl)butanamides (7a–j). In the final phase, nucleophilic substitution reaction of 4 was carried out with different electrophiles, 7a–j, to achieve novel indole based oxadiazole scaffolds with N-(substituted-phenyl)butamides (8a–j). The structural confirmation of all the as-synthesized compounds was performed by spectral and elemental analysis. These molecules were screened for their in vitro inhibitory potential against urease enzyme and were found to be potent inhibitors. The results of enzyme inhibitory kinetics showed that compound 8c inhibited the enzyme competitively with a K(i) value 0.003 μM. The results of the in silico study of these scaffolds were in full agreement with the experimental data and the ligands showed good binding energy values. The hemolytic study revealed their mild cytotoxicity towards cell membranes and hence, these molecules can be regarded as valuable therapeutic agents in drug designing programs. |
format | Online Article Text |
id | pubmed-9082783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90827832022-05-09 Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors Nazir, Majid Abbasi, Muhammad Athar Aziz-ur-Rehman, Siddiqui, Sabahat Zahra Raza, Hussain Hassan, Mubashir Ali Shah, Syed Adnan Shahid, Muhammad Seo, Sung-Yum RSC Adv Chemistry In the study presented herein, 4-(1H-indol-3-yl)butanoic acid (1) was sequentially transformed in the first phase into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3) and 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4) as a nucleophile. In the second phase, various electrophiles were synthesized by reacting substituted-anilines, 5a–j, with 4-chlorobutanoyl chloride (6) to afford 4-chloro-N-(substituted-phenyl)butanamides (7a–j). In the final phase, nucleophilic substitution reaction of 4 was carried out with different electrophiles, 7a–j, to achieve novel indole based oxadiazole scaffolds with N-(substituted-phenyl)butamides (8a–j). The structural confirmation of all the as-synthesized compounds was performed by spectral and elemental analysis. These molecules were screened for their in vitro inhibitory potential against urease enzyme and were found to be potent inhibitors. The results of enzyme inhibitory kinetics showed that compound 8c inhibited the enzyme competitively with a K(i) value 0.003 μM. The results of the in silico study of these scaffolds were in full agreement with the experimental data and the ligands showed good binding energy values. The hemolytic study revealed their mild cytotoxicity towards cell membranes and hence, these molecules can be regarded as valuable therapeutic agents in drug designing programs. The Royal Society of Chemistry 2018-07-19 /pmc/articles/PMC9082783/ /pubmed/35541970 http://dx.doi.org/10.1039/c8ra04987d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Nazir, Majid Abbasi, Muhammad Athar Aziz-ur-Rehman, Siddiqui, Sabahat Zahra Raza, Hussain Hassan, Mubashir Ali Shah, Syed Adnan Shahid, Muhammad Seo, Sung-Yum Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title | Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title_full | Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title_fullStr | Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title_full_unstemmed | Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title_short | Novel indole based hybrid oxadiazole scaffolds with N-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
title_sort | novel indole based hybrid oxadiazole scaffolds with n-(substituted-phenyl)butanamides: synthesis, lineweaver–burk plot evaluation and binding analysis of potent urease inhibitors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082783/ https://www.ncbi.nlm.nih.gov/pubmed/35541970 http://dx.doi.org/10.1039/c8ra04987d |
work_keys_str_mv | AT nazirmajid novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT abbasimuhammadathar novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT azizurrehman novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT siddiquisabahatzahra novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT razahussain novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT hassanmubashir novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT alishahsyedadnan novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT shahidmuhammad novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors AT seosungyum novelindolebasedhybridoxadiazolescaffoldswithnsubstitutedphenylbutanamidessynthesislineweaverburkplotevaluationandbindinganalysisofpotentureaseinhibitors |