Cargando…

Postdocs as Key to Faculty Diversity: A Structured and Collaborative Approach for Research Universities

Over the past 50 years the diversity of higher education faculty in the mathematical, physical, computer, and engineering sciences (MPCES) has advanced very little at 4-year universities in the United States. This is despite laws and policies such as affirmative action, interventions by universities...

Descripción completa

Detalles Bibliográficos
Autores principales: Patt, Colette, Eppig, Andrew, Richards, Mark A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083322/
https://www.ncbi.nlm.nih.gov/pubmed/35547154
http://dx.doi.org/10.3389/fpsyg.2021.759263
Descripción
Sumario:Over the past 50 years the diversity of higher education faculty in the mathematical, physical, computer, and engineering sciences (MPCES) has advanced very little at 4-year universities in the United States. This is despite laws and policies such as affirmative action, interventions by universities, and enormous financial investment by federal agencies to diversify science, technology, mathematics, and engineering (STEM) career pathways into academia. Data comparing the fraction of underrepresented minority (URM) postdoctoral scholars to the fraction of faculty at these institutions offer a straightforward empirical explanation for this state of affairs. URM postdoc appointments lag significantly behind progress in terms of both undergraduate and Ph.D.-level STEM student populations. Indeed, URM postdoc appointments lag well-behind faculty diversity itself in the MPCES fields, most of which draw their faculty heavily from the postdoctoral ranks, particularly at research-intensive (R1) universities. Thus, a sea-change in how postdocs are recruited, how their careers are developed, and how they are identified as potential faculty is required in order to diversify the nation’s faculty, and particularly the R1 MPCES professoriate. Our research shows that both Ph.D. students and postdocs benefit from intentional structure at various levels of their respective “apprentice” experiences, a factor that we believe has been neglected. Several key structural approaches are highly effective in these regards: (1) A collaborative approach in which leading research universities collectively identify outstanding URM candidates; (2) Faculty engagement in recruiting and supporting these postdocs; (3) Inter-institutional exchange programs to heighten the visibility and broaden the professional experiences of these postdocs; (4) Community-building activities that create a sense of belonging and encourage continuing in academia for each cohort; and (5) Continuing research based on outcomes and new experimental approaches. The California Alliance, consisting of UC Berkeley, UCLA, Caltech, and Stanford, has been engaged in such a program for almost a decade now, with most of the California Alliance URM postdocs now in tenure track positions or on the path toward careers as faculty at research intensive (R1) institutions. If this approach was brought to scale by involving the top 25 or so URM Ph.D.-producing R1 institutions in the MPCES fields, about 40% of the national URM postdoctoral population in these fields could be affected. Although this impact would fall short of bringing URM MPCES faculty ranks up to full representation of the United States population as a whole, it would vastly improve the outlook for URM students and their aspirations to take on leadership roles as scientists and engineers.