Cargando…

Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers

Bismuth has been identified as a material of interest for electronic applications due to its extremely high electron mobility and quantum confinement effects observed at nanoscale dimensions. However, it is also the case that Bi nanostructures are readily oxidised in ambient air, necessitating addit...

Descripción completa

Detalles Bibliográficos
Autores principales: Alessio Verni, Giuseppe, Long, Brenda, Gity, Farzan, Lanius, Martin, Schüffelgen, Peter, Mussler, Gregor, Grützmacher, Detlev, Greer, Jim, Holmes, Justin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086459/
https://www.ncbi.nlm.nih.gov/pubmed/35548121
http://dx.doi.org/10.1039/c8ra06840b
Descripción
Sumario:Bismuth has been identified as a material of interest for electronic applications due to its extremely high electron mobility and quantum confinement effects observed at nanoscale dimensions. However, it is also the case that Bi nanostructures are readily oxidised in ambient air, necessitating additional capping steps to prevent surface re-oxidation, thus limiting the processing potential of this material. This article describes an oxide removal and surface stabilization method performed on molecular beam epitaxy (MBE) grown bismuth thin-films using ambient air wet-chemistry. Alkanethiol molecules were used to dissolve the readily formed bismuth oxides through a catalytic reaction; the bare surface was then reacted with the free thiols to form an organic layer which showed resistance to complete reoxidation for up to 10 days.