Cargando…
A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity
Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092432/ https://www.ncbi.nlm.nih.gov/pubmed/35656483 http://dx.doi.org/10.1039/d2cb00040g |
_version_ | 1784705139987185664 |
---|---|
author | Pereira, Raul Flaherty, Renée L. Edwards, Richard S. Greenwood, Hannah E. Shuhendler, Adam J. Witney, Timothy H. |
author_facet | Pereira, Raul Flaherty, Renée L. Edwards, Richard S. Greenwood, Hannah E. Shuhendler, Adam J. Witney, Timothy H. |
author_sort | Pereira, Raul |
collection | PubMed |
description | Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation. |
format | Online Article Text |
id | pubmed-9092432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-90924322022-06-01 A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity Pereira, Raul Flaherty, Renée L. Edwards, Richard S. Greenwood, Hannah E. Shuhendler, Adam J. Witney, Timothy H. RSC Chem Biol Chemistry Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation. RSC 2022-03-11 /pmc/articles/PMC9092432/ /pubmed/35656483 http://dx.doi.org/10.1039/d2cb00040g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Pereira, Raul Flaherty, Renée L. Edwards, Richard S. Greenwood, Hannah E. Shuhendler, Adam J. Witney, Timothy H. A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title | A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title_full | A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title_fullStr | A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title_full_unstemmed | A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title_short | A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
title_sort | prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092432/ https://www.ncbi.nlm.nih.gov/pubmed/35656483 http://dx.doi.org/10.1039/d2cb00040g |
work_keys_str_mv | AT pereiraraul aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT flahertyreneel aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT edwardsrichards aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT greenwoodhannahe aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT shuhendleradamj aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT witneytimothyh aprodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT pereiraraul prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT flahertyreneel prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT edwardsrichards prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT greenwoodhannahe prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT shuhendleradamj prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity AT witneytimothyh prodrugstrategyfortheinvivoimagingofaldehydedehydrogenaseactivity |