Cargando…
Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity
Hypoxia contributes to airway inflammation and remodeling in several lung diseases; however, exactly how hypoxic pulmonary epithelium regulates allergic inflammation remains to be fully characterized. Here, we report that conditional deletion of the E3 ubiquitin ligase VHL in lung epithelial cells r...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093746/ https://www.ncbi.nlm.nih.gov/pubmed/35532553 http://dx.doi.org/10.1084/jem.20211985 |
_version_ | 1784705401020743680 |
---|---|
author | Han, Jihye Wan, Qingqing Seo, Goo-Young Kim, Kenneth el Baghdady, Sarah Lee, Jee H. Kronenberg, Mitchell Liu, Yun-Cai |
author_facet | Han, Jihye Wan, Qingqing Seo, Goo-Young Kim, Kenneth el Baghdady, Sarah Lee, Jee H. Kronenberg, Mitchell Liu, Yun-Cai |
author_sort | Han, Jihye |
collection | PubMed |
description | Hypoxia contributes to airway inflammation and remodeling in several lung diseases; however, exactly how hypoxic pulmonary epithelium regulates allergic inflammation remains to be fully characterized. Here, we report that conditional deletion of the E3 ubiquitin ligase VHL in lung epithelial cells resulted in exacerbated type 2 responses accompanied by selective increase of group 2 innate lymphoid cells (ILC2s) at steady state and following inflammation or helminth infection. Ablation of expression of the hypoxia-inducible factor 2α (HIF2α) significantly reversed VHL-mediated ILC2 activation. VHL deficiency in lung epithelial cells caused increased expression of the peptide hormone adrenomedullin (ADM), and our data suggest that HIF2α controls Adm expression. ADM directly promoted ILC2 activation both in vitro and in vivo. Our findings indicate that the hypoxic response mediated by the VHL–HIF2α axis is critical for control of pulmonary type 2 responses by increasing ADM expression in lung epithelia, causing ILC2 activation. |
format | Online Article Text |
id | pubmed-9093746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-90937462022-12-06 Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity Han, Jihye Wan, Qingqing Seo, Goo-Young Kim, Kenneth el Baghdady, Sarah Lee, Jee H. Kronenberg, Mitchell Liu, Yun-Cai J Exp Med Article Hypoxia contributes to airway inflammation and remodeling in several lung diseases; however, exactly how hypoxic pulmonary epithelium regulates allergic inflammation remains to be fully characterized. Here, we report that conditional deletion of the E3 ubiquitin ligase VHL in lung epithelial cells resulted in exacerbated type 2 responses accompanied by selective increase of group 2 innate lymphoid cells (ILC2s) at steady state and following inflammation or helminth infection. Ablation of expression of the hypoxia-inducible factor 2α (HIF2α) significantly reversed VHL-mediated ILC2 activation. VHL deficiency in lung epithelial cells caused increased expression of the peptide hormone adrenomedullin (ADM), and our data suggest that HIF2α controls Adm expression. ADM directly promoted ILC2 activation both in vitro and in vivo. Our findings indicate that the hypoxic response mediated by the VHL–HIF2α axis is critical for control of pulmonary type 2 responses by increasing ADM expression in lung epithelia, causing ILC2 activation. Rockefeller University Press 2022-05-09 /pmc/articles/PMC9093746/ /pubmed/35532553 http://dx.doi.org/10.1084/jem.20211985 Text en © 2022 Han et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Han, Jihye Wan, Qingqing Seo, Goo-Young Kim, Kenneth el Baghdady, Sarah Lee, Jee H. Kronenberg, Mitchell Liu, Yun-Cai Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title | Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title_full | Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title_fullStr | Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title_full_unstemmed | Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title_short | Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity |
title_sort | hypoxia induces adrenomedullin from lung epithelia, stimulating ilc2 inflammation and immunity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093746/ https://www.ncbi.nlm.nih.gov/pubmed/35532553 http://dx.doi.org/10.1084/jem.20211985 |
work_keys_str_mv | AT hanjihye hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT wanqingqing hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT seogooyoung hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT kimkenneth hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT elbaghdadysarah hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT leejeeh hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT kronenbergmitchell hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity AT liuyuncai hypoxiainducesadrenomedullinfromlungepitheliastimulatingilc2inflammationandimmunity |