Cargando…

Regulation of developmental hierarchy in Drosophila neural stem cell tumors by COMPASS and Polycomb complexes

COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors i...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaultier, Cassandra, Foppolo, Sophie, Maurange, Cédric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094666/
https://www.ncbi.nlm.nih.gov/pubmed/35544555
http://dx.doi.org/10.1126/sciadv.abi4529
Descripción
Sumario:COMPASS and Polycomb complexes are antagonistic chromatin complexes that are frequently inactivated in cancers, but how these events affect the cellular hierarchy, composition, and growth of tumors is unclear. These characteristics can be systematically investigated in Drosophila neuroblast tumors in which cooption of temporal patterning induces a developmental hierarchy that confers cancer stem cell (CSC) properties to a subset of neuroblasts retaining an early larval temporal identity. Here, using single-cell transcriptomics, we reveal that the trithorax/MLL1/2-COMPASS–like complex guides the developmental trajectory at the top of the tumor hierarchy. Consequently, trithorax knockdown drives larval-to-embryonic temporal reversion and the marked expansion of CSCs that remain locked in a spectrum of early temporal states. Unexpectedly, this phenotype is amplified by concomitant inactivation of Polycomb repressive complex 2 genes, unleashing tumor growth. This study illustrates how inactivation of specific COMPASS and Polycomb complexes cooperates to impair tumor hierarchies, inducing CSC plasticity, heterogeneity, and expansion.