Cargando…
Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting
The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097589/ https://www.ncbi.nlm.nih.gov/pubmed/35354069 http://dx.doi.org/10.1016/j.cmet.2022.03.002 |
_version_ | 1784706209273610240 |
---|---|
author | Liu, Yang Méric, Guillaume Havulinna, Aki S. Teo, Shu Mei Åberg, Fredrik Ruuskanen, Matti Sanders, Jon Zhu, Qiyun Tripathi, Anupriya Verspoor, Karin Cheng, Susan Jain, Mohit Jousilahti, Pekka Vázquez-Baeza, Yoshiki Loomba, Rohit Lahti, Leo Niiranen, Teemu Salomaa, Veikko Knight, Rob Inouye, Michael |
author_facet | Liu, Yang Méric, Guillaume Havulinna, Aki S. Teo, Shu Mei Åberg, Fredrik Ruuskanen, Matti Sanders, Jon Zhu, Qiyun Tripathi, Anupriya Verspoor, Karin Cheng, Susan Jain, Mohit Jousilahti, Pekka Vázquez-Baeza, Yoshiki Loomba, Rohit Lahti, Leo Niiranen, Teemu Salomaa, Veikko Knight, Rob Inouye, Michael |
author_sort | Liu, Yang |
collection | PubMed |
description | The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with ∼15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease-free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases. |
format | Online Article Text |
id | pubmed-9097589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-90975892022-06-14 Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting Liu, Yang Méric, Guillaume Havulinna, Aki S. Teo, Shu Mei Åberg, Fredrik Ruuskanen, Matti Sanders, Jon Zhu, Qiyun Tripathi, Anupriya Verspoor, Karin Cheng, Susan Jain, Mohit Jousilahti, Pekka Vázquez-Baeza, Yoshiki Loomba, Rohit Lahti, Leo Niiranen, Teemu Salomaa, Veikko Knight, Rob Inouye, Michael Cell Metab Article The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with ∼15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease-free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases. Cell Press 2022-05-03 /pmc/articles/PMC9097589/ /pubmed/35354069 http://dx.doi.org/10.1016/j.cmet.2022.03.002 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liu, Yang Méric, Guillaume Havulinna, Aki S. Teo, Shu Mei Åberg, Fredrik Ruuskanen, Matti Sanders, Jon Zhu, Qiyun Tripathi, Anupriya Verspoor, Karin Cheng, Susan Jain, Mohit Jousilahti, Pekka Vázquez-Baeza, Yoshiki Loomba, Rohit Lahti, Leo Niiranen, Teemu Salomaa, Veikko Knight, Rob Inouye, Michael Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title | Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title_full | Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title_fullStr | Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title_full_unstemmed | Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title_short | Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
title_sort | early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097589/ https://www.ncbi.nlm.nih.gov/pubmed/35354069 http://dx.doi.org/10.1016/j.cmet.2022.03.002 |
work_keys_str_mv | AT liuyang earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT mericguillaume earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT havulinnaakis earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT teoshumei earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT abergfredrik earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT ruuskanenmatti earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT sandersjon earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT zhuqiyun earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT tripathianupriya earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT verspoorkarin earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT chengsusan earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT jainmohit earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT jousilahtipekka earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT vazquezbaezayoshiki earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT loombarohit earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT lahtileo earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT niiranenteemu earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT salomaaveikko earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT knightrob earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting AT inouyemichael earlypredictionofincidentliverdiseaseusingconventionalriskfactorsandgutmicrobiomeaugmentedgradientboosting |