Cargando…
Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off
[Image: see text] The tetrazine/trans-cyclooctene ligation stands out from the bioorthogonal toolbox due to its exceptional reaction kinetics, enabling multiple molecular technologies in vitro and in living systems. Highly reactive 2-pyridyl-substituted tetrazines have become state of the art for ti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100665/ https://www.ncbi.nlm.nih.gov/pubmed/35500228 http://dx.doi.org/10.1021/jacs.2c01056 |
_version_ | 1784706901024440320 |
---|---|
author | Svatunek, Dennis Wilkovitsch, Martin Hartmann, Lea Houk, K. N. Mikula, Hannes |
author_facet | Svatunek, Dennis Wilkovitsch, Martin Hartmann, Lea Houk, K. N. Mikula, Hannes |
author_sort | Svatunek, Dennis |
collection | PubMed |
description | [Image: see text] The tetrazine/trans-cyclooctene ligation stands out from the bioorthogonal toolbox due to its exceptional reaction kinetics, enabling multiple molecular technologies in vitro and in living systems. Highly reactive 2-pyridyl-substituted tetrazines have become state of the art for time-critical processes and selective reactions at very low concentrations. It is widely accepted that the enhanced reactivity of these chemical tools is attributed to the electron-withdrawing effect of the heteroaryl substituent. In contrast, we show that the observed reaction rates are way too high to be explained on this basis. Computational investigation of this phenomenon revealed that distortion of the tetrazine caused by intramolecular repulsive N–N interaction plays a key role in accelerating the cycloaddition step. We show that the limited stability of tetrazines in biological media strongly correlates with the electron-withdrawing effect of the substituent, while intramolecular repulsion increases the reactivity without reducing the stability. These fundamental insights reveal thus far overlooked mechanistic aspects that govern the reactivity/stability trade-off for tetrazines in physiologically relevant environments, thereby providing a new strategy that may facilitate the rational design of these bioorthogonal tools. |
format | Online Article Text |
id | pubmed-9100665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-91006652022-05-14 Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off Svatunek, Dennis Wilkovitsch, Martin Hartmann, Lea Houk, K. N. Mikula, Hannes J Am Chem Soc [Image: see text] The tetrazine/trans-cyclooctene ligation stands out from the bioorthogonal toolbox due to its exceptional reaction kinetics, enabling multiple molecular technologies in vitro and in living systems. Highly reactive 2-pyridyl-substituted tetrazines have become state of the art for time-critical processes and selective reactions at very low concentrations. It is widely accepted that the enhanced reactivity of these chemical tools is attributed to the electron-withdrawing effect of the heteroaryl substituent. In contrast, we show that the observed reaction rates are way too high to be explained on this basis. Computational investigation of this phenomenon revealed that distortion of the tetrazine caused by intramolecular repulsive N–N interaction plays a key role in accelerating the cycloaddition step. We show that the limited stability of tetrazines in biological media strongly correlates with the electron-withdrawing effect of the substituent, while intramolecular repulsion increases the reactivity without reducing the stability. These fundamental insights reveal thus far overlooked mechanistic aspects that govern the reactivity/stability trade-off for tetrazines in physiologically relevant environments, thereby providing a new strategy that may facilitate the rational design of these bioorthogonal tools. American Chemical Society 2022-05-02 2022-05-11 /pmc/articles/PMC9100665/ /pubmed/35500228 http://dx.doi.org/10.1021/jacs.2c01056 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Svatunek, Dennis Wilkovitsch, Martin Hartmann, Lea Houk, K. N. Mikula, Hannes Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title | Uncovering
the Key Role of Distortion in Bioorthogonal
Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title_full | Uncovering
the Key Role of Distortion in Bioorthogonal
Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title_fullStr | Uncovering
the Key Role of Distortion in Bioorthogonal
Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title_full_unstemmed | Uncovering
the Key Role of Distortion in Bioorthogonal
Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title_short | Uncovering
the Key Role of Distortion in Bioorthogonal
Tetrazine Tools That Defy the Reactivity/Stability Trade-Off |
title_sort | uncovering
the key role of distortion in bioorthogonal
tetrazine tools that defy the reactivity/stability trade-off |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100665/ https://www.ncbi.nlm.nih.gov/pubmed/35500228 http://dx.doi.org/10.1021/jacs.2c01056 |
work_keys_str_mv | AT svatunekdennis uncoveringthekeyroleofdistortioninbioorthogonaltetrazinetoolsthatdefythereactivitystabilitytradeoff AT wilkovitschmartin uncoveringthekeyroleofdistortioninbioorthogonaltetrazinetoolsthatdefythereactivitystabilitytradeoff AT hartmannlea uncoveringthekeyroleofdistortioninbioorthogonaltetrazinetoolsthatdefythereactivitystabilitytradeoff AT houkkn uncoveringthekeyroleofdistortioninbioorthogonaltetrazinetoolsthatdefythereactivitystabilitytradeoff AT mikulahannes uncoveringthekeyroleofdistortioninbioorthogonaltetrazinetoolsthatdefythereactivitystabilitytradeoff |