Cargando…
Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice?
Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101035/ https://www.ncbi.nlm.nih.gov/pubmed/35563836 http://dx.doi.org/10.3390/cells11091530 |
Sumario: | Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or impaired proliferation. At the same time, aneuploidy can provide a growth advantage under selective conditions in a stressful, frequently changing environment. This is likely why aneuploidy is commonly found in cancer cells, where it correlates with malignancy, drug resistance, and poor prognosis. To understand this “aneuploidy paradox”, model systems have been established and analyzed to investigate the consequences of aneuploidy. Most of the evidence to date has been based on models with chromosomes gains, but chromosome losses and recurrent monosomies can also be found in cancer. We summarize the current models of chromosome loss and our understanding of its consequences, particularly in comparison to chromosome gains. |
---|