Cargando…
Efficient Fmoc-Protected Amino Ester Hydrolysis Using Green Calcium(II) Iodide as a Protective Agent
In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highligh...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103075/ https://www.ncbi.nlm.nih.gov/pubmed/35566143 http://dx.doi.org/10.3390/molecules27092788 |
Sumario: | In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highlights the need for orthogonal conditions that permit selective deprotection of esters to create SPPS-ready amino acids. Herein, mild orthogonal ester hydrolysis conditions are systematically explored using calcium(II) iodide as a protective agent for the Fmoc protecting group and optimized for a broad scope of amino esters. Our optimized reaction improved on the already known trimethyltin hydroxide, as it produced better yields with greener, inexpensive chemicals and a less extensive energy expenditure. |
---|