Cargando…
The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells
Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies—diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is controlled by Rho...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103681/ https://www.ncbi.nlm.nih.gov/pubmed/35563863 http://dx.doi.org/10.3390/cells11091559 |
_version_ | 1784707611110670336 |
---|---|
author | Becker, Kathryn N. Pettee, Krista M. Sugrue, Amanda Reinard, Kevin A. Schroeder, Jason L. Eisenmann, Kathryn M. |
author_facet | Becker, Kathryn N. Pettee, Krista M. Sugrue, Amanda Reinard, Kevin A. Schroeder, Jason L. Eisenmann, Kathryn M. |
author_sort | Becker, Kathryn N. |
collection | PubMed |
description | Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies—diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is controlled by Rho-GTPases, which exert their effects through downstream effector protein activation, including Rho-associated kinases (ROCK) 1 and 2 and mammalian diaphanous-related (mDia) formins (mDia1, 2, and 3). Precise spatial and temporal balancing of the activity between these effectors dictates cell shape, adhesion turnover, and motility. Using small molecules targeting mDia, we demonstrated that global agonism (IMM02) was superior to antagonism (SMIFH2) as anti-invasion strategies in GBM spheroids. Here, we use IDH-wild-type GBM patient-derived cell models and a novel semi-adherent in vitro system to investigate the relationship between ROCK and mDia in invasion and tumor microtube networks. IMM02-mediated mDia agonism disrupts invasion in GBM patient-derived spheroid models, in part by inducing mDia expression loss and tumor microtube network collapse. Pharmacological disruption of ROCK prevented invasive cell-body movement away from GBM spheres, yet induced ultralong, phenotypically abnormal tumor microtube formation. Simultaneously targeting mDia and ROCK did not enhance the anti-invasive/-tumor microtube effects of IMM02. Our data reveal that targeting mDia is a viable GBM anti-invasion/-tumor microtube networking strategy, while ROCK inhibition is contraindicated. |
format | Online Article Text |
id | pubmed-9103681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91036812022-05-14 The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells Becker, Kathryn N. Pettee, Krista M. Sugrue, Amanda Reinard, Kevin A. Schroeder, Jason L. Eisenmann, Kathryn M. Cells Article Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies—diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is controlled by Rho-GTPases, which exert their effects through downstream effector protein activation, including Rho-associated kinases (ROCK) 1 and 2 and mammalian diaphanous-related (mDia) formins (mDia1, 2, and 3). Precise spatial and temporal balancing of the activity between these effectors dictates cell shape, adhesion turnover, and motility. Using small molecules targeting mDia, we demonstrated that global agonism (IMM02) was superior to antagonism (SMIFH2) as anti-invasion strategies in GBM spheroids. Here, we use IDH-wild-type GBM patient-derived cell models and a novel semi-adherent in vitro system to investigate the relationship between ROCK and mDia in invasion and tumor microtube networks. IMM02-mediated mDia agonism disrupts invasion in GBM patient-derived spheroid models, in part by inducing mDia expression loss and tumor microtube network collapse. Pharmacological disruption of ROCK prevented invasive cell-body movement away from GBM spheres, yet induced ultralong, phenotypically abnormal tumor microtube formation. Simultaneously targeting mDia and ROCK did not enhance the anti-invasive/-tumor microtube effects of IMM02. Our data reveal that targeting mDia is a viable GBM anti-invasion/-tumor microtube networking strategy, while ROCK inhibition is contraindicated. MDPI 2022-05-05 /pmc/articles/PMC9103681/ /pubmed/35563863 http://dx.doi.org/10.3390/cells11091559 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Becker, Kathryn N. Pettee, Krista M. Sugrue, Amanda Reinard, Kevin A. Schroeder, Jason L. Eisenmann, Kathryn M. The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title | The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title_full | The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title_fullStr | The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title_full_unstemmed | The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title_short | The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells |
title_sort | cytoskeleton effectors rho-kinase (rock) and mammalian diaphanous-related (mdia) formin have dynamic roles in tumor microtube formation in invasive glioblastoma cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103681/ https://www.ncbi.nlm.nih.gov/pubmed/35563863 http://dx.doi.org/10.3390/cells11091559 |
work_keys_str_mv | AT beckerkathrynn thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT petteekristam thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT sugrueamanda thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT reinardkevina thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT schroederjasonl thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT eisenmannkathrynm thecytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT beckerkathrynn cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT petteekristam cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT sugrueamanda cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT reinardkevina cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT schroederjasonl cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells AT eisenmannkathrynm cytoskeletoneffectorsrhokinaserockandmammaliandiaphanousrelatedmdiaforminhavedynamicrolesintumormicrotubeformationininvasiveglioblastomacells |