Cargando…
Chromatin interaction–aware gene regulatory modeling with graph attention networks
Linking distal enhancers to genes and modeling their impact on target gene expression are longstanding unresolved problems in regulatory genomics and critical for interpreting noncoding genetic variation. Here, we present a new deep learning approach called GraphReg that exploits 3D interactions fro...
Autores principales: | Karbalayghareh, Alireza, Sahin, Merve, Leslie, Christina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104700/ https://www.ncbi.nlm.nih.gov/pubmed/35396274 http://dx.doi.org/10.1101/gr.275870.121 |
Ejemplares similares
-
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023) -
OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks
por: Li, Tingting, et al.
Publicado: (2018) -
Epiphany: predicting Hi-C contact maps from 1D epigenomic signals
por: Yang, Rui, et al.
Publicado: (2023) -
Profiling the long noncoding RNA interaction network in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing
por: Zhang, Shilin, et al.
Publicado: (2019) -
Intrinsically Bayesian robust classifier for single-cell gene expression trajectories in gene regulatory networks
por: Karbalayghareh, Alireza, et al.
Publicado: (2018)