Cargando…

Silencing of histone deacetylase 3 suppresses the development of esophageal squamous cell carcinoma through regulation of miR-494-mediated TGIF1

BACKGROUND: Deacetylation of histones by histone deacetylase 3 (HDAC3) acts importantly in modulating apoptosis, DNA damage and cellular progression. Herein, we aimed to unravel the functional role of HDAC3 in a lethal disease, esophageal squamous cell carcinoma (ESCC). METHODS: The expression of HD...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Zhang, Yuan, Lin, Zongxiang, Wu, Kai, He, Zhanfeng, Zhu, Dengyan, Zhao, Jia, Zhang, Chunyang, Fan, Yuxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109300/
https://www.ncbi.nlm.nih.gov/pubmed/35578338
http://dx.doi.org/10.1186/s12935-022-02581-3
Descripción
Sumario:BACKGROUND: Deacetylation of histones by histone deacetylase 3 (HDAC3) acts importantly in modulating apoptosis, DNA damage and cellular progression. Herein, we aimed to unravel the functional role of HDAC3 in a lethal disease, esophageal squamous cell carcinoma (ESCC). METHODS: The expression of HDAC3 in clinically collected ESCC tissues was determined by RT-qPCR and immunohistochemistry. As revealed from bioinformatics analysis, the putative relations between HDAC3 and microRNA-494 (miR-494) and between miR-494 and transforming growth factor beta (TGFβ)-inducing factor 1 (TGIF1) were further verified by chromatin immunoprecipitation and dual-luciferase reporter gene assay. Functional roles of shRNA-mediated depletion of HDAC3, miR-494 mimic and overexpressed TGIF1 were explored by gain- and loss-of-function assays with regard to ESCC cell biological behaviors. A nude mouse model of ESCC was developed for in vivo validation. RESULTS: HDAC3 was highly expressed in ESCC tissues, suggestive of poor prognosis while TGIF1 was upregulated and miR-494 was downregulated. Mechanistic investigation revealed that HDAC3 inhibited miR-494 expression and TGIF1 was a direct target of miR-494. Furthermore, silencing HDAC3 or overexpressing miR-494 was demonstrated to suppress aggressive phenotypes of ESCC cells both in vitro through the activated TGFβ signaling pathway and in vivo, while TGIF1 overexpression induced opposite results. CONCLUSION: Collectively, our findings provided demonstration regarding the oncogenic property of HDAC3 in ESCC via the miR-494/TGIF1/TGFβ axis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-022-02581-3.