Cargando…
Identifying common transcriptome signatures of cancer by interpreting deep learning models
BACKGROUND: Cancer is a set of diseases characterized by unchecked cell proliferation and invasion of surrounding tissues. The many genes that have been genetically associated with cancer or shown to directly contribute to oncogenesis vary widely between tumor types, but common gene signatures that...
Autores principales: | Jha, Anupama, Quesnel-Vallières, Mathieu, Wang, David, Thomas-Tikhonenko, Andrei, Lynch, Kristen W, Barash, Yoseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112525/ https://www.ncbi.nlm.nih.gov/pubmed/35581644 http://dx.doi.org/10.1186/s13059-022-02681-3 |
Ejemplares similares
-
A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers
por: Wang, David, et al.
Publicado: (2023) -
Enhanced Integrated Gradients: improving interpretability of deep learning models using splicing codes as a case study
por: Jha, Anupama, et al.
Publicado: (2020) -
Integrative deep models for alternative splicing
por: Jha, Anupama, et al.
Publicado: (2017) -
MOCCASIN: a method for correcting for known and unknown confounders in RNA splicing analysis
por: Slaff, Barry, et al.
Publicado: (2021) -
Rapid and Scalable Profiling of Nascent RNA with fastGRO
por: Barbieri, Elisa, et al.
Publicado: (2020)