Cargando…

Synthesis of High-Molecular-Weight Branched Polyethylene Using a Hybrid “Sandwich” Pyridine-Imine Ni(II) Catalyst

Most pyridine-imine Ni(II) and Pd(II) catalysts tend to yield low-molecular-weight polyethylene and ethylene-based copolymers in olefin insertion polymerization, as the unilateral axial steric structure of such complexes often cannot provide effective shielding of the metal center. In this study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, You, Cai, Qi, Wang, Yuyin, Gao, Jiangang, Chi, Yue, Dai, Shengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114440/
https://www.ncbi.nlm.nih.gov/pubmed/35601545
http://dx.doi.org/10.3389/fchem.2022.886888
Descripción
Sumario:Most pyridine-imine Ni(II) and Pd(II) catalysts tend to yield low-molecular-weight polyethylene and ethylene-based copolymers in olefin insertion polymerization, as the unilateral axial steric structure of such complexes often cannot provide effective shielding of the metal center. In this study, we synthesized a series of hybrid “semi-sandwich” and “sandwich” type pyridine-imine Ni(II) complexes by incorporating diarylmethyl or dibenzosuberyl groups onto 8-aryl-naphthyl motif. The as-prepared Ni(II) complexes afforded highly branched polyethylene with high molecular weights (level of 10(5) g/mol), and moderate activities (level of 10(5) g/(molh)) in ethylene polymerization. Most interestingly, compared to “semi-sandwich” Ni(II) complexes bearing (2-diarylmethyl-8-aryl)naphthyl units, the “full-sandwich” counterpart containing (2-dibenzosuberyl-8-aryl)naphthyl motif was able to produce higher-molecular-weight polyethylene with higher branching density. In addition, the effect of remote non-conjugated electronic substituents in diarylmethyl groups of the Ni(II) system was also observed in ethylene polymerization.