Cargando…
Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies
BACKGROUND: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-act...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117556/ https://www.ncbi.nlm.nih.gov/pubmed/35584557 http://dx.doi.org/10.1016/j.ebiom.2022.104057 |
_version_ | 1784710336567312384 |
---|---|
author | Téblick, Arno Van Dyck, Lisa Van Aerde, Nathalie Van der Perre, Sarah Pauwels, Lies Derese, Inge Debaveye, Yves Wouters, Pieter J. Vanhorebeek, Ilse Langouche, Lies Van den Berghe, Greet |
author_facet | Téblick, Arno Van Dyck, Lisa Van Aerde, Nathalie Van der Perre, Sarah Pauwels, Lies Derese, Inge Debaveye, Yves Wouters, Pieter J. Vanhorebeek, Ilse Langouche, Lies Van den Berghe, Greet |
author_sort | Téblick, Arno |
collection | PubMed |
description | BACKGROUND: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-action which adaptively guides glucocorticoid action to sites of need. METHODS: We performed a prospective, observational, cross-sectional human study and two translational mouse studies. In freshly-isolated neutrophils and monocytes and in skeletal muscle and subcutaneous adipose tissue of 137 critically ill patients and 20 healthy controls and in skeletal muscle and adipose tissue as well as in vital tissues (heart, lung, diaphragm, liver, kidney) of 88 septic and 26 healthy mice, we quantified gene expression of cortisone-reductase 11β-HSD1, glucocorticoid-receptor-isoforms GRα and GRβ, GRα-sensitivity-regulating-co-chaperone FKBP51, and GR-action-marker GILZ. Expression profiles were compared in relation to illness-duration and systemic-glucocorticoid-availability. FINDINGS: In patients’ neutrophils, GRα and GILZ were substantially suppressed (p≤0·05) throughout intensive care unit (ICU)-stay, while in monocytes low/normal GRα coincided with increased GILZ (p≤0·05). FKBP51 was increased transiently (neutrophils) or always (monocytes,p≤0·05). In patients’ muscle, 11β-HSD1 and GRα were low-normal (p≤0·05) and substantially suppressed in adipose tissue (p≤0·05); FKBP51 and GILZ were increased in skeletal muscle (p≤0·05) but normal in adipose tissue. GRβ was undetectable. Increasing systemic glucocorticoid availability in patients independently associated with further suppressed muscle 11β-HSD1 and GRα, further increased FKBP51 and unaltered GILZ (p≤0·05). In septic mouse heart and lung, 11β-HSD1, FKBP51 and GILZ were always high (p≤0·01). In heart, GRα was suppressed (p≤0·05), while normal or high in lung (all p≤0·05). In diaphragm, 11β-HSD1 was high/normal, GRα low/normal and FKBP51 and GILZ high (p≤0·01). In kidney, 11β-HSD1 transiently increased but decreased thereafter, GRα was normal and FKBP51 and GILZ high (p≤0·01). In liver, 11β-HSD1 was suppressed (p≤0·01), GRα normal and FKBP51 high (p≤0·01) whereas GILZ was transiently decreased but elevated thereafter (p≤0·05). Only in lung and diaphragm, treatment with hydrocortisone further increased GILZ. INTERPRETATION: Tissue-specific, time-independent adaptations to critical illness guided GR-action predominantly to vital tissues such as lung, while (partially) protecting against collateral harm in other cells and tissues, such as neutrophils. These findings argue against maladaptive generalised glucocorticoid-resistance necessitating glucocorticoid-treatment. FUNDING: Research-Foundation-Flanders, Methusalem-Program-Flemish-Government, European-Research-Council, European-Respiratory-Society. |
format | Online Article Text |
id | pubmed-9117556 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91175562022-06-07 Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies Téblick, Arno Van Dyck, Lisa Van Aerde, Nathalie Van der Perre, Sarah Pauwels, Lies Derese, Inge Debaveye, Yves Wouters, Pieter J. Vanhorebeek, Ilse Langouche, Lies Van den Berghe, Greet eBioMedicine Articles BACKGROUND: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-action which adaptively guides glucocorticoid action to sites of need. METHODS: We performed a prospective, observational, cross-sectional human study and two translational mouse studies. In freshly-isolated neutrophils and monocytes and in skeletal muscle and subcutaneous adipose tissue of 137 critically ill patients and 20 healthy controls and in skeletal muscle and adipose tissue as well as in vital tissues (heart, lung, diaphragm, liver, kidney) of 88 septic and 26 healthy mice, we quantified gene expression of cortisone-reductase 11β-HSD1, glucocorticoid-receptor-isoforms GRα and GRβ, GRα-sensitivity-regulating-co-chaperone FKBP51, and GR-action-marker GILZ. Expression profiles were compared in relation to illness-duration and systemic-glucocorticoid-availability. FINDINGS: In patients’ neutrophils, GRα and GILZ were substantially suppressed (p≤0·05) throughout intensive care unit (ICU)-stay, while in monocytes low/normal GRα coincided with increased GILZ (p≤0·05). FKBP51 was increased transiently (neutrophils) or always (monocytes,p≤0·05). In patients’ muscle, 11β-HSD1 and GRα were low-normal (p≤0·05) and substantially suppressed in adipose tissue (p≤0·05); FKBP51 and GILZ were increased in skeletal muscle (p≤0·05) but normal in adipose tissue. GRβ was undetectable. Increasing systemic glucocorticoid availability in patients independently associated with further suppressed muscle 11β-HSD1 and GRα, further increased FKBP51 and unaltered GILZ (p≤0·05). In septic mouse heart and lung, 11β-HSD1, FKBP51 and GILZ were always high (p≤0·01). In heart, GRα was suppressed (p≤0·05), while normal or high in lung (all p≤0·05). In diaphragm, 11β-HSD1 was high/normal, GRα low/normal and FKBP51 and GILZ high (p≤0·01). In kidney, 11β-HSD1 transiently increased but decreased thereafter, GRα was normal and FKBP51 and GILZ high (p≤0·01). In liver, 11β-HSD1 was suppressed (p≤0·01), GRα normal and FKBP51 high (p≤0·01) whereas GILZ was transiently decreased but elevated thereafter (p≤0·05). Only in lung and diaphragm, treatment with hydrocortisone further increased GILZ. INTERPRETATION: Tissue-specific, time-independent adaptations to critical illness guided GR-action predominantly to vital tissues such as lung, while (partially) protecting against collateral harm in other cells and tissues, such as neutrophils. These findings argue against maladaptive generalised glucocorticoid-resistance necessitating glucocorticoid-treatment. FUNDING: Research-Foundation-Flanders, Methusalem-Program-Flemish-Government, European-Research-Council, European-Respiratory-Society. Elsevier 2022-05-15 /pmc/articles/PMC9117556/ /pubmed/35584557 http://dx.doi.org/10.1016/j.ebiom.2022.104057 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Téblick, Arno Van Dyck, Lisa Van Aerde, Nathalie Van der Perre, Sarah Pauwels, Lies Derese, Inge Debaveye, Yves Wouters, Pieter J. Vanhorebeek, Ilse Langouche, Lies Van den Berghe, Greet Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title | Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title_full | Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title_fullStr | Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title_full_unstemmed | Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title_short | Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies |
title_sort | impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: a prospective, observational, cross-sectional human and two translational mouse studies |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117556/ https://www.ncbi.nlm.nih.gov/pubmed/35584557 http://dx.doi.org/10.1016/j.ebiom.2022.104057 |
work_keys_str_mv | AT teblickarno impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT vandycklisa impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT vanaerdenathalie impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT vanderperresarah impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT pauwelslies impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT dereseinge impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT debaveyeyves impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT wouterspieterj impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT vanhorebeekilse impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT langouchelies impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies AT vandenberghegreet impactofdurationofcriticalillnessandlevelofsystemicglucocorticoidavailabilityontissuespecificglucocorticoidreceptorexpressionandactionsaprospectiveobservationalcrosssectionalhumanandtwotranslationalmousestudies |