Cargando…

Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment

Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compe...

Descripción completa

Detalles Bibliográficos
Autores principales: Balderas, Enrique, Eberhardt, David R., Lee, Sandra, Pleinis, John M., Sommakia, Salah, Balynas, Anthony M., Yin, Xue, Parker, Mitchell C., Maguire, Colin T., Cho, Scott, Szulik, Marta W., Bakhtina, Anna, Bia, Ryan D., Friederich, Marisa W., Locke, Timothy M., Van Hove, Johan L. K., Drakos, Stavros G., Sancak, Yasemin, Tristani-Firouzi, Martin, Franklin, Sarah, Rodan, Aylin R., Chaudhuri, Dipayan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120069/
https://www.ncbi.nlm.nih.gov/pubmed/35589699
http://dx.doi.org/10.1038/s41467-022-30236-4
_version_ 1784710846606213120
author Balderas, Enrique
Eberhardt, David R.
Lee, Sandra
Pleinis, John M.
Sommakia, Salah
Balynas, Anthony M.
Yin, Xue
Parker, Mitchell C.
Maguire, Colin T.
Cho, Scott
Szulik, Marta W.
Bakhtina, Anna
Bia, Ryan D.
Friederich, Marisa W.
Locke, Timothy M.
Van Hove, Johan L. K.
Drakos, Stavros G.
Sancak, Yasemin
Tristani-Firouzi, Martin
Franklin, Sarah
Rodan, Aylin R.
Chaudhuri, Dipayan
author_facet Balderas, Enrique
Eberhardt, David R.
Lee, Sandra
Pleinis, John M.
Sommakia, Salah
Balynas, Anthony M.
Yin, Xue
Parker, Mitchell C.
Maguire, Colin T.
Cho, Scott
Szulik, Marta W.
Bakhtina, Anna
Bia, Ryan D.
Friederich, Marisa W.
Locke, Timothy M.
Van Hove, Johan L. K.
Drakos, Stavros G.
Sancak, Yasemin
Tristani-Firouzi, Martin
Franklin, Sarah
Rodan, Aylin R.
Chaudhuri, Dipayan
author_sort Balderas, Enrique
collection PubMed
description Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.
format Online
Article
Text
id pubmed-9120069
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91200692022-05-21 Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment Balderas, Enrique Eberhardt, David R. Lee, Sandra Pleinis, John M. Sommakia, Salah Balynas, Anthony M. Yin, Xue Parker, Mitchell C. Maguire, Colin T. Cho, Scott Szulik, Marta W. Bakhtina, Anna Bia, Ryan D. Friederich, Marisa W. Locke, Timothy M. Van Hove, Johan L. K. Drakos, Stavros G. Sancak, Yasemin Tristani-Firouzi, Martin Franklin, Sarah Rodan, Aylin R. Chaudhuri, Dipayan Nat Commun Article Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment. Nature Publishing Group UK 2022-05-19 /pmc/articles/PMC9120069/ /pubmed/35589699 http://dx.doi.org/10.1038/s41467-022-30236-4 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Balderas, Enrique
Eberhardt, David R.
Lee, Sandra
Pleinis, John M.
Sommakia, Salah
Balynas, Anthony M.
Yin, Xue
Parker, Mitchell C.
Maguire, Colin T.
Cho, Scott
Szulik, Marta W.
Bakhtina, Anna
Bia, Ryan D.
Friederich, Marisa W.
Locke, Timothy M.
Van Hove, Johan L. K.
Drakos, Stavros G.
Sancak, Yasemin
Tristani-Firouzi, Martin
Franklin, Sarah
Rodan, Aylin R.
Chaudhuri, Dipayan
Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title_full Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title_fullStr Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title_full_unstemmed Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title_short Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment
title_sort mitochondrial calcium uniporter stabilization preserves energetic homeostasis during complex i impairment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120069/
https://www.ncbi.nlm.nih.gov/pubmed/35589699
http://dx.doi.org/10.1038/s41467-022-30236-4
work_keys_str_mv AT balderasenrique mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT eberhardtdavidr mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT leesandra mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT pleinisjohnm mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT sommakiasalah mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT balynasanthonym mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT yinxue mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT parkermitchellc mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT maguirecolint mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT choscott mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT szulikmartaw mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT bakhtinaanna mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT biaryand mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT friederichmarisaw mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT locketimothym mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT vanhovejohanlk mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT drakosstavrosg mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT sancakyasemin mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT tristanifirouzimartin mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT franklinsarah mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT rodanaylinr mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment
AT chaudhuridipayan mitochondrialcalciumuniporterstabilizationpreservesenergetichomeostasisduringcomplexiimpairment