Cargando…
Random forest vs. logistic regression: Predicting angiographic in-stent restenosis after second-generation drug-eluting stent implantation
As the rate of percutaneous coronary intervention increases, in-stent restenosis (ISR) has become a burden. Random forest (RF) could be superior to logistic regression (LR) for predicting ISR due to its robustness. We developed an RF model and compared its performance with the LR one for predicting...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126385/ https://www.ncbi.nlm.nih.gov/pubmed/35604911 http://dx.doi.org/10.1371/journal.pone.0268757 |