Cargando…
Random forest vs. logistic regression: Predicting angiographic in-stent restenosis after second-generation drug-eluting stent implantation
As the rate of percutaneous coronary intervention increases, in-stent restenosis (ISR) has become a burden. Random forest (RF) could be superior to logistic regression (LR) for predicting ISR due to its robustness. We developed an RF model and compared its performance with the LR one for predicting...
Autores principales: | Jiang, Zhi, Tian, Longhai, Liu, Wei, Song, Bo, Xue, Chao, Li, Tianzong, Chen, Jin, Wei, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126385/ https://www.ncbi.nlm.nih.gov/pubmed/35604911 http://dx.doi.org/10.1371/journal.pone.0268757 |
Ejemplares similares
-
Genetic risk model for in-stent restenosis of second-and third-generation drug-eluting stents
por: Liu, Yen-Wen, et al.
Publicado: (2021) -
In-Stent Restenosis due to Stent Recoil After Third-Generation Drug-Eluting Stent Implantation
por: Kato, Yuta, et al.
Publicado: (2017) -
In-Stent Restenosis Exacerbated by Drug-Induced Severe Eosinophilia after Second-Generation Drug-Eluting Stent Implantation
por: Yagi, Hiroki, et al.
Publicado: (2014) -
In-stent restenosis of drug-eluting stents in patients with diabetes mellitus: Clinical presentation, angiographic features, and outcomes
por: Paramasivam, Ganesh, et al.
Publicado: (2020) -
Therapeutic Strategy for In-Stent Restenosis Based on the Restenosis Pattern After Drug-Eluting Stent Implantation
por: Kim, Ki-Hun, et al.
Publicado: (2009)