Cargando…

An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization

The pharmaceutical agent theophylline (THEO) is primarily used as a bronchodilator and is commercially available in both tablet and liquid dosage forms. THEO is highly hygroscopic, reducing its stability, overall shelf-life, and therefore usage as a drug. THEO and dicarboxylic acid cocrystals were d...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawkins, Bryson A., Du, Jonathan J., Lai, Felcia, Stanton, Stephen A., Williams, Peter A., Groundwater, Paul W., Platts, James A., Overgaard, Jacob, Hibbs, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126648/
https://www.ncbi.nlm.nih.gov/pubmed/35685708
http://dx.doi.org/10.1039/d1ra08389a
_version_ 1784712172157272064
author Hawkins, Bryson A.
Du, Jonathan J.
Lai, Felcia
Stanton, Stephen A.
Williams, Peter A.
Groundwater, Paul W.
Platts, James A.
Overgaard, Jacob
Hibbs, David E.
author_facet Hawkins, Bryson A.
Du, Jonathan J.
Lai, Felcia
Stanton, Stephen A.
Williams, Peter A.
Groundwater, Paul W.
Platts, James A.
Overgaard, Jacob
Hibbs, David E.
author_sort Hawkins, Bryson A.
collection PubMed
description The pharmaceutical agent theophylline (THEO) is primarily used as a bronchodilator and is commercially available in both tablet and liquid dosage forms. THEO is highly hygroscopic, reducing its stability, overall shelf-life, and therefore usage as a drug. THEO and dicarboxylic acid cocrystals were designed by Trask et al. in an attempt to decrease the hygroscopic behaviour of THEO; cocrystallisation of THEO with malonic acid (MA) did not improve the hygroscopic stability of THEO in simulated atmospheric humidity testing. The current study employed high-resolution X-ray crystallography, and Density Functional Theory (DFT) calculations to examine the electron density distribution (EDD) changes between the cocrystal and its individual components. The EED changes identified the reasons why the THEO:MA cocrystal did not alter the hygroscopic profile of THEO. The cocrystal was equally porous, with atomic packing factors (APF) similar to those of THEO 0.73 vs. 0.71, respectively. The THEO:MA (1) cocrystal structure is held together by an array of interactions; a heterogeneous synthon between the imidazole and a carboxylic fragment stabilising the asymmetric unit, a pyrimidine-imidazole homosynthon, and an aromatic cycle stack between two THEO moieties have been identified, providing 9.7–12.9 kJ mol(−1) of stability. These factors did not change the overall relative stability of the cocrystal relative to its individual THEO and MA components, as shown by cocrystal (1) and THEO being equally stable, with calculated lattice energies within 2.5 kJ mol(−1) of one other. The hydrogen bond analysis and fragmented atomic charge analysis highlighted that the formation of (1) combined both the EDD of THEO and MA with no net chemical change, suggesting that the reverse reaction — (1) back to THEO and MA — is of equal potential, ultimately producing THEO hydrate formation, in agreement with the work of Trask et al. These results highlight that a review of the EDD change associated with a chemical reaction can aid in understanding cocrystal design. In addition, they indicate that cocrystal design requires further investigation before becoming a reliable process, with particular emphasis on identifying the appropriate balance of synthon engineering, weak interactions, and packing dynamics.
format Online
Article
Text
id pubmed-9126648
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-91266482022-06-08 An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization Hawkins, Bryson A. Du, Jonathan J. Lai, Felcia Stanton, Stephen A. Williams, Peter A. Groundwater, Paul W. Platts, James A. Overgaard, Jacob Hibbs, David E. RSC Adv Chemistry The pharmaceutical agent theophylline (THEO) is primarily used as a bronchodilator and is commercially available in both tablet and liquid dosage forms. THEO is highly hygroscopic, reducing its stability, overall shelf-life, and therefore usage as a drug. THEO and dicarboxylic acid cocrystals were designed by Trask et al. in an attempt to decrease the hygroscopic behaviour of THEO; cocrystallisation of THEO with malonic acid (MA) did not improve the hygroscopic stability of THEO in simulated atmospheric humidity testing. The current study employed high-resolution X-ray crystallography, and Density Functional Theory (DFT) calculations to examine the electron density distribution (EDD) changes between the cocrystal and its individual components. The EED changes identified the reasons why the THEO:MA cocrystal did not alter the hygroscopic profile of THEO. The cocrystal was equally porous, with atomic packing factors (APF) similar to those of THEO 0.73 vs. 0.71, respectively. The THEO:MA (1) cocrystal structure is held together by an array of interactions; a heterogeneous synthon between the imidazole and a carboxylic fragment stabilising the asymmetric unit, a pyrimidine-imidazole homosynthon, and an aromatic cycle stack between two THEO moieties have been identified, providing 9.7–12.9 kJ mol(−1) of stability. These factors did not change the overall relative stability of the cocrystal relative to its individual THEO and MA components, as shown by cocrystal (1) and THEO being equally stable, with calculated lattice energies within 2.5 kJ mol(−1) of one other. The hydrogen bond analysis and fragmented atomic charge analysis highlighted that the formation of (1) combined both the EDD of THEO and MA with no net chemical change, suggesting that the reverse reaction — (1) back to THEO and MA — is of equal potential, ultimately producing THEO hydrate formation, in agreement with the work of Trask et al. These results highlight that a review of the EDD change associated with a chemical reaction can aid in understanding cocrystal design. In addition, they indicate that cocrystal design requires further investigation before becoming a reliable process, with particular emphasis on identifying the appropriate balance of synthon engineering, weak interactions, and packing dynamics. The Royal Society of Chemistry 2022-05-23 /pmc/articles/PMC9126648/ /pubmed/35685708 http://dx.doi.org/10.1039/d1ra08389a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Hawkins, Bryson A.
Du, Jonathan J.
Lai, Felcia
Stanton, Stephen A.
Williams, Peter A.
Groundwater, Paul W.
Platts, James A.
Overgaard, Jacob
Hibbs, David E.
An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title_full An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title_fullStr An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title_full_unstemmed An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title_short An experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
title_sort experimental and theoretical charge density study of theophylline and malonic acid cocrystallization
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126648/
https://www.ncbi.nlm.nih.gov/pubmed/35685708
http://dx.doi.org/10.1039/d1ra08389a
work_keys_str_mv AT hawkinsbrysona anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT dujonathanj anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT laifelcia anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT stantonstephena anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT williamspetera anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT groundwaterpaulw anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT plattsjamesa anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT overgaardjacob anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT hibbsdavide anexperimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT hawkinsbrysona experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT dujonathanj experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT laifelcia experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT stantonstephena experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT williamspetera experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT groundwaterpaulw experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT plattsjamesa experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT overgaardjacob experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization
AT hibbsdavide experimentalandtheoreticalchargedensitystudyoftheophyllineandmalonicacidcocrystallization