Cargando…
Goal Oriented Behavior With a Habit-Based Adaptive Sensorimotor Map Network
We present a description of an ASM-network, a new habit-based robot controller model consisting of a network of adaptive sensorimotor maps. This model draws upon recent theoretical developments in enactive cognition concerning habit and agency at the sensorimotor level. It aims to provide a platform...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127740/ https://www.ncbi.nlm.nih.gov/pubmed/35619969 http://dx.doi.org/10.3389/fnbot.2022.846693 |
Sumario: | We present a description of an ASM-network, a new habit-based robot controller model consisting of a network of adaptive sensorimotor maps. This model draws upon recent theoretical developments in enactive cognition concerning habit and agency at the sensorimotor level. It aims to provide a platform for experimental investigation into the relationship between networked organizations of habits and cognitive behavior. It does this by combining (1) a basic mechanism of generating continuous motor activity as a function of historical sensorimotor trajectories with (2) an evaluative mechanism which reinforces or weakens those historical trajectories as a function of their support of a higher-order structure of higher-order sensorimotor coordinations. After describing the model, we then present the results of applying this model in the context of a well-known minimal cognition task involving object discrimination. In our version of this experiment, an individual robot is able to learn the task through a combination of exploration through random movements and repetition of historic trajectories which support the structure of a pre-given network of sensorimotor coordinations. The experimental results illustrate how, utilizing enactive principles, a robot can display recognizable learning behavior without explicit representational mechanisms or extraneous fitness variables. Instead, our model's behavior adapts according to the internal requirements of the action-generating mechanism itself. |
---|