Cargando…
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients
Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129103/ https://www.ncbi.nlm.nih.gov/pubmed/33398088 http://dx.doi.org/10.1038/s41380-020-00981-3 |
_version_ | 1784712690161156096 |
---|---|
author | Santos, Renata Linker, Sara B. Stern, Shani Mendes, Ana P. D. Shokhirev, Maxim N. Erikson, Galina Randolph-Moore, Lynne Racha, Vipula Kim, Yeni Kelsoe, John R. Bang, Anne G. Alda, M. Marchetto, Maria C. Gage, Fred H. |
author_facet | Santos, Renata Linker, Sara B. Stern, Shani Mendes, Ana P. D. Shokhirev, Maxim N. Erikson, Galina Randolph-Moore, Lynne Racha, Vipula Kim, Yeni Kelsoe, John R. Bang, Anne G. Alda, M. Marchetto, Maria C. Gage, Fred H. |
author_sort | Santos, Renata |
collection | PubMed |
description | Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1 and reduced excitability in NR neurons. Additionally, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment. |
format | Online Article Text |
id | pubmed-9129103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91291032022-05-24 Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients Santos, Renata Linker, Sara B. Stern, Shani Mendes, Ana P. D. Shokhirev, Maxim N. Erikson, Galina Randolph-Moore, Lynne Racha, Vipula Kim, Yeni Kelsoe, John R. Bang, Anne G. Alda, M. Marchetto, Maria C. Gage, Fred H. Mol Psychiatry Article Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/β-catenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1 and reduced excitability in NR neurons. Additionally, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment. 2021-06 2021-01-04 /pmc/articles/PMC9129103/ /pubmed/33398088 http://dx.doi.org/10.1038/s41380-020-00981-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Santos, Renata Linker, Sara B. Stern, Shani Mendes, Ana P. D. Shokhirev, Maxim N. Erikson, Galina Randolph-Moore, Lynne Racha, Vipula Kim, Yeni Kelsoe, John R. Bang, Anne G. Alda, M. Marchetto, Maria C. Gage, Fred H. Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title | Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title_full | Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title_fullStr | Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title_full_unstemmed | Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title_short | Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
title_sort | deficient lef1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129103/ https://www.ncbi.nlm.nih.gov/pubmed/33398088 http://dx.doi.org/10.1038/s41380-020-00981-3 |
work_keys_str_mv | AT santosrenata deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT linkersarab deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT sternshani deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT mendesanapd deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT shokhirevmaximn deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT eriksongalina deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT randolphmoorelynne deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT rachavipula deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT kimyeni deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT kelsoejohnr deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT banganneg deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT aldam deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT marchettomariac deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients AT gagefredh deficientlef1expressionisassociatedwithlithiumresistanceandhyperexcitabilityinneuronsderivedfrombipolardisorderpatients |