Cargando…

An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae

Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAm...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Bingyin, Esquirol, Lygie, Lu, Zeyu, Shen, Qianyi, Cheah, Li Chen, Howard, Christopher B., Scott, Colin, Trau, Matt, Dumsday, Geoff, Vickers, Claudia E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130285/
https://www.ncbi.nlm.nih.gov/pubmed/35610221
http://dx.doi.org/10.1038/s41467-022-30529-8
_version_ 1784712955069202432
author Peng, Bingyin
Esquirol, Lygie
Lu, Zeyu
Shen, Qianyi
Cheah, Li Chen
Howard, Christopher B.
Scott, Colin
Trau, Matt
Dumsday, Geoff
Vickers, Claudia E.
author_facet Peng, Bingyin
Esquirol, Lygie
Lu, Zeyu
Shen, Qianyi
Cheah, Li Chen
Howard, Christopher B.
Scott, Colin
Trau, Matt
Dumsday, Geoff
Vickers, Claudia E.
author_sort Peng, Bingyin
collection PubMed
description Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAmp, a method that uses haploinsufficiency as evolutionary force to drive in vivo gene amplification. HapAmp enables efficient, titratable, and stable integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The method is exemplified in metabolic engineering to significantly improve production of the sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene titre is improved by 20-fold in a single engineering step, delivering ∼1 g L(−1) in the flask cultivation. We also show a significant increase in heterologous protein production in yeast. HapAmp is an efficient approach to unlock metabolic bottlenecks rapidly for development of microbial cell factories.
format Online
Article
Text
id pubmed-9130285
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91302852022-05-26 An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae Peng, Bingyin Esquirol, Lygie Lu, Zeyu Shen, Qianyi Cheah, Li Chen Howard, Christopher B. Scott, Colin Trau, Matt Dumsday, Geoff Vickers, Claudia E. Nat Commun Article Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAmp, a method that uses haploinsufficiency as evolutionary force to drive in vivo gene amplification. HapAmp enables efficient, titratable, and stable integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The method is exemplified in metabolic engineering to significantly improve production of the sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene titre is improved by 20-fold in a single engineering step, delivering ∼1 g L(−1) in the flask cultivation. We also show a significant increase in heterologous protein production in yeast. HapAmp is an efficient approach to unlock metabolic bottlenecks rapidly for development of microbial cell factories. Nature Publishing Group UK 2022-05-24 /pmc/articles/PMC9130285/ /pubmed/35610221 http://dx.doi.org/10.1038/s41467-022-30529-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Peng, Bingyin
Esquirol, Lygie
Lu, Zeyu
Shen, Qianyi
Cheah, Li Chen
Howard, Christopher B.
Scott, Colin
Trau, Matt
Dumsday, Geoff
Vickers, Claudia E.
An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title_full An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title_fullStr An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title_full_unstemmed An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title_short An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
title_sort in vivo gene amplification system for high level expression in saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130285/
https://www.ncbi.nlm.nih.gov/pubmed/35610221
http://dx.doi.org/10.1038/s41467-022-30529-8
work_keys_str_mv AT pengbingyin aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT esquirollygie aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT luzeyu aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT shenqianyi aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT cheahlichen aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT howardchristopherb aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT scottcolin aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT traumatt aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT dumsdaygeoff aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT vickersclaudiae aninvivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT pengbingyin invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT esquirollygie invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT luzeyu invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT shenqianyi invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT cheahlichen invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT howardchristopherb invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT scottcolin invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT traumatt invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT dumsdaygeoff invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae
AT vickersclaudiae invivogeneamplificationsystemforhighlevelexpressioninsaccharomycescerevisiae