Cargando…
Characterization and clustering of kinase isoform expression in metastatic melanoma
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attent...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132324/ https://www.ncbi.nlm.nih.gov/pubmed/35560144 http://dx.doi.org/10.1371/journal.pcbi.1010065 |
_version_ | 1784713355112480768 |
---|---|
author | Holland, David O. Gotea, Valer Fedkenheuer, Kevin Jaiswal, Sushil K. Baugher, Catherine Tan, Hua Fedkenheuer, Michael Elnitski, Laura |
author_facet | Holland, David O. Gotea, Valer Fedkenheuer, Kevin Jaiswal, Sushil K. Baugher, Catherine Tan, Hua Fedkenheuer, Michael Elnitski, Laura |
author_sort | Holland, David O. |
collection | PubMed |
description | Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase’s downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer. |
format | Online Article Text |
id | pubmed-9132324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-91323242022-05-26 Characterization and clustering of kinase isoform expression in metastatic melanoma Holland, David O. Gotea, Valer Fedkenheuer, Kevin Jaiswal, Sushil K. Baugher, Catherine Tan, Hua Fedkenheuer, Michael Elnitski, Laura PLoS Comput Biol Research Article Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase’s downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer. Public Library of Science 2022-05-13 /pmc/articles/PMC9132324/ /pubmed/35560144 http://dx.doi.org/10.1371/journal.pcbi.1010065 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Holland, David O. Gotea, Valer Fedkenheuer, Kevin Jaiswal, Sushil K. Baugher, Catherine Tan, Hua Fedkenheuer, Michael Elnitski, Laura Characterization and clustering of kinase isoform expression in metastatic melanoma |
title | Characterization and clustering of kinase isoform expression in metastatic melanoma |
title_full | Characterization and clustering of kinase isoform expression in metastatic melanoma |
title_fullStr | Characterization and clustering of kinase isoform expression in metastatic melanoma |
title_full_unstemmed | Characterization and clustering of kinase isoform expression in metastatic melanoma |
title_short | Characterization and clustering of kinase isoform expression in metastatic melanoma |
title_sort | characterization and clustering of kinase isoform expression in metastatic melanoma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132324/ https://www.ncbi.nlm.nih.gov/pubmed/35560144 http://dx.doi.org/10.1371/journal.pcbi.1010065 |
work_keys_str_mv | AT hollanddavido characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT goteavaler characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT fedkenheuerkevin characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT jaiswalsushilk characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT baughercatherine characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT tanhua characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT fedkenheuermichael characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma AT elnitskilaura characterizationandclusteringofkinaseisoformexpressioninmetastaticmelanoma |