Cargando…
The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review
BACKGROUND: Mobile health (mHealth) apps targeting health behaviors using behavior change techniques (BCTs) have been successful in promoting healthy behaviors; however, their efficacy with sleep is unclear. Some work has shown success in promoting sleep through mHealth, whereas there have been repo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132368/ https://www.ncbi.nlm.nih.gov/pubmed/35377327 http://dx.doi.org/10.2196/33527 |
_version_ | 1784713363568197632 |
---|---|
author | Arroyo, Amber Carmen Zawadzki, Matthew J |
author_facet | Arroyo, Amber Carmen Zawadzki, Matthew J |
author_sort | Arroyo, Amber Carmen |
collection | PubMed |
description | BACKGROUND: Mobile health (mHealth) apps targeting health behaviors using behavior change techniques (BCTs) have been successful in promoting healthy behaviors; however, their efficacy with sleep is unclear. Some work has shown success in promoting sleep through mHealth, whereas there have been reports that sleep apps can be adverse and lead to unhealthy obsessions with achieving perfect sleep. OBJECTIVE: This study aims to report and describe the use of BCTs in mHealth apps for sleep with the following research questions: How many BCTs are used on average in sleep apps, and does this relate to their effectiveness on sleep outcomes? Are there specific BCTs used more or less often in sleep apps, and does this relate to their effectiveness on sleep outcomes? Does the effect of mHealth app interventions on sleep change when distinguishing between dimension and measurement of sleep? METHODS: We conducted a systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to review articles on mHealth app interventions for sleep published between 2010 and 2020. RESULTS: A total of 12 studies met the eligibility criteria. Most studies reported positive sleep outcomes, and there were no negative effects reported. Sleep quality was the most common dimension of sleep targeted. Subjective measures of sleep were used across all apps, whereas objective measures were often assessed but rarely reported as part of results. The average number of BCTs used was 7.67 (SD 2.32; range 3-11) of 16. Of the 12 studies, the most commonly used BCTs were feedback and monitoring (n=11, 92%), shaping knowledge (n=11, 92%), goals and planning (n=10, 83%), and antecedents (n=10, 83%), whereas the least common were scheduled consequences (n=0, 0%), self-belief (n=0, 0%), and covert learning (n=0, 0%). Most apps used a similar set of BCTs that unfortunately did not allow us to distinguish which BCTs were present when studies reported more positive outcomes. CONCLUSIONS: Our study describes the peer-reviewed literature on sleep apps and provides a foundation for further examination and optimization of BCTs used in mHealth apps for sleep. We found strong evidence that mHealth apps are effective in improving sleep, and the potential reasons for the lack of adverse sleep outcome reporting are discussed. We found evidence that the type of BCTs used in mHealth apps for sleep differed from other health outcomes, although more research is needed to understand how BCTs can be implemented effectively to improve sleep using mHealth and the mechanisms of action through which they are effective (eg, self-efficacy, social norms, and attitudes). |
format | Online Article Text |
id | pubmed-9132368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-91323682022-05-26 The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review Arroyo, Amber Carmen Zawadzki, Matthew J JMIR Mhealth Uhealth Review BACKGROUND: Mobile health (mHealth) apps targeting health behaviors using behavior change techniques (BCTs) have been successful in promoting healthy behaviors; however, their efficacy with sleep is unclear. Some work has shown success in promoting sleep through mHealth, whereas there have been reports that sleep apps can be adverse and lead to unhealthy obsessions with achieving perfect sleep. OBJECTIVE: This study aims to report and describe the use of BCTs in mHealth apps for sleep with the following research questions: How many BCTs are used on average in sleep apps, and does this relate to their effectiveness on sleep outcomes? Are there specific BCTs used more or less often in sleep apps, and does this relate to their effectiveness on sleep outcomes? Does the effect of mHealth app interventions on sleep change when distinguishing between dimension and measurement of sleep? METHODS: We conducted a systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to review articles on mHealth app interventions for sleep published between 2010 and 2020. RESULTS: A total of 12 studies met the eligibility criteria. Most studies reported positive sleep outcomes, and there were no negative effects reported. Sleep quality was the most common dimension of sleep targeted. Subjective measures of sleep were used across all apps, whereas objective measures were often assessed but rarely reported as part of results. The average number of BCTs used was 7.67 (SD 2.32; range 3-11) of 16. Of the 12 studies, the most commonly used BCTs were feedback and monitoring (n=11, 92%), shaping knowledge (n=11, 92%), goals and planning (n=10, 83%), and antecedents (n=10, 83%), whereas the least common were scheduled consequences (n=0, 0%), self-belief (n=0, 0%), and covert learning (n=0, 0%). Most apps used a similar set of BCTs that unfortunately did not allow us to distinguish which BCTs were present when studies reported more positive outcomes. CONCLUSIONS: Our study describes the peer-reviewed literature on sleep apps and provides a foundation for further examination and optimization of BCTs used in mHealth apps for sleep. We found strong evidence that mHealth apps are effective in improving sleep, and the potential reasons for the lack of adverse sleep outcome reporting are discussed. We found evidence that the type of BCTs used in mHealth apps for sleep differed from other health outcomes, although more research is needed to understand how BCTs can be implemented effectively to improve sleep using mHealth and the mechanisms of action through which they are effective (eg, self-efficacy, social norms, and attitudes). JMIR Publications 2022-04-04 /pmc/articles/PMC9132368/ /pubmed/35377327 http://dx.doi.org/10.2196/33527 Text en ©Amber Carmen Arroyo, Matthew J Zawadzki. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 04.04.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Review Arroyo, Amber Carmen Zawadzki, Matthew J The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title | The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title_full | The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title_fullStr | The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title_full_unstemmed | The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title_short | The Implementation of Behavior Change Techniques in mHealth Apps for Sleep: Systematic Review |
title_sort | implementation of behavior change techniques in mhealth apps for sleep: systematic review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132368/ https://www.ncbi.nlm.nih.gov/pubmed/35377327 http://dx.doi.org/10.2196/33527 |
work_keys_str_mv | AT arroyoambercarmen theimplementationofbehaviorchangetechniquesinmhealthappsforsleepsystematicreview AT zawadzkimatthewj theimplementationofbehaviorchangetechniquesinmhealthappsforsleepsystematicreview AT arroyoambercarmen implementationofbehaviorchangetechniquesinmhealthappsforsleepsystematicreview AT zawadzkimatthewj implementationofbehaviorchangetechniquesinmhealthappsforsleepsystematicreview |