Cargando…
COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133078/ https://www.ncbi.nlm.nih.gov/pubmed/35210569 http://dx.doi.org/10.1038/s41380-022-01474-1 |
_version_ | 1784713511957430272 |
---|---|
author | Cheon, Seonhye Culver, Allison M. Bagnell, Anna M. Ritchie, Foster D. Vacharasin, Janay M. McCord, Mykayla M. Papendorp, Carin M. Chukwurah, Evelyn Smith, Austin J. Cowen, Mara H. Moreland, Trevor A. Ghate, Pankaj S. Davis, Shannon W. Liu, Judy S. Lizarraga, Sofia B. |
author_facet | Cheon, Seonhye Culver, Allison M. Bagnell, Anna M. Ritchie, Foster D. Vacharasin, Janay M. McCord, Mykayla M. Papendorp, Carin M. Chukwurah, Evelyn Smith, Austin J. Cowen, Mara H. Moreland, Trevor A. Ghate, Pankaj S. Davis, Shannon W. Liu, Judy S. Lizarraga, Sofia B. |
author_sort | Cheon, Seonhye |
collection | PubMed |
description | Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations. |
format | Online Article Text |
id | pubmed-9133078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91330782022-08-24 COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS Cheon, Seonhye Culver, Allison M. Bagnell, Anna M. Ritchie, Foster D. Vacharasin, Janay M. McCord, Mykayla M. Papendorp, Carin M. Chukwurah, Evelyn Smith, Austin J. Cowen, Mara H. Moreland, Trevor A. Ghate, Pankaj S. Davis, Shannon W. Liu, Judy S. Lizarraga, Sofia B. Mol Psychiatry Article Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations. 2022-04 2022-02-24 /pmc/articles/PMC9133078/ /pubmed/35210569 http://dx.doi.org/10.1038/s41380-022-01474-1 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: |
spellingShingle | Article Cheon, Seonhye Culver, Allison M. Bagnell, Anna M. Ritchie, Foster D. Vacharasin, Janay M. McCord, Mykayla M. Papendorp, Carin M. Chukwurah, Evelyn Smith, Austin J. Cowen, Mara H. Moreland, Trevor A. Ghate, Pankaj S. Davis, Shannon W. Liu, Judy S. Lizarraga, Sofia B. COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title | COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title_full | COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title_fullStr | COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title_full_unstemmed | COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title_short | COUNTERACTING EPIGENETIC MECHANISMS REGULATE THE STRUCTURAL DEVELOPMENT OF NEURONAL CIRCUITRY IN HUMAN NEURONS |
title_sort | counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133078/ https://www.ncbi.nlm.nih.gov/pubmed/35210569 http://dx.doi.org/10.1038/s41380-022-01474-1 |
work_keys_str_mv | AT cheonseonhye counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT culverallisonm counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT bagnellannam counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT ritchiefosterd counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT vacharasinjanaym counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT mccordmykaylam counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT papendorpcarinm counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT chukwurahevelyn counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT smithaustinj counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT cowenmarah counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT morelandtrevora counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT ghatepankajs counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT davisshannonw counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT liujudys counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons AT lizarragasofiab counteractingepigeneticmechanismsregulatethestructuraldevelopmentofneuronalcircuitryinhumanneurons |