Cargando…
A survey on computational taste predictors
Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134981/ https://www.ncbi.nlm.nih.gov/pubmed/35637881 http://dx.doi.org/10.1007/s00217-022-04044-5 |
_version_ | 1784713871561326592 |
---|---|
author | Malavolta, Marta Pallante, Lorenzo Mavkov, Bojan Stojceski, Filip Grasso, Gianvito Korfiati, Aigli Mavroudi, Seferina Kalogeras, Athanasios Alexakos, Christos Martos, Vanessa Amoroso, Daria Di Benedetto, Giacomo Piga, Dario Theofilatos, Konstantinos Deriu, Marco Agostino |
author_facet | Malavolta, Marta Pallante, Lorenzo Mavkov, Bojan Stojceski, Filip Grasso, Gianvito Korfiati, Aigli Mavroudi, Seferina Kalogeras, Athanasios Alexakos, Christos Martos, Vanessa Amoroso, Daria Di Benedetto, Giacomo Piga, Dario Theofilatos, Konstantinos Deriu, Marco Agostino |
author_sort | Malavolta, Marta |
collection | PubMed |
description | Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00217-022-04044-5. |
format | Online Article Text |
id | pubmed-9134981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-91349812022-05-26 A survey on computational taste predictors Malavolta, Marta Pallante, Lorenzo Mavkov, Bojan Stojceski, Filip Grasso, Gianvito Korfiati, Aigli Mavroudi, Seferina Kalogeras, Athanasios Alexakos, Christos Martos, Vanessa Amoroso, Daria Di Benedetto, Giacomo Piga, Dario Theofilatos, Konstantinos Deriu, Marco Agostino Eur Food Res Technol Review Article Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00217-022-04044-5. Springer Berlin Heidelberg 2022-05-26 2022 /pmc/articles/PMC9134981/ /pubmed/35637881 http://dx.doi.org/10.1007/s00217-022-04044-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Article Malavolta, Marta Pallante, Lorenzo Mavkov, Bojan Stojceski, Filip Grasso, Gianvito Korfiati, Aigli Mavroudi, Seferina Kalogeras, Athanasios Alexakos, Christos Martos, Vanessa Amoroso, Daria Di Benedetto, Giacomo Piga, Dario Theofilatos, Konstantinos Deriu, Marco Agostino A survey on computational taste predictors |
title | A survey on computational taste predictors |
title_full | A survey on computational taste predictors |
title_fullStr | A survey on computational taste predictors |
title_full_unstemmed | A survey on computational taste predictors |
title_short | A survey on computational taste predictors |
title_sort | survey on computational taste predictors |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134981/ https://www.ncbi.nlm.nih.gov/pubmed/35637881 http://dx.doi.org/10.1007/s00217-022-04044-5 |
work_keys_str_mv | AT malavoltamarta asurveyoncomputationaltastepredictors AT pallantelorenzo asurveyoncomputationaltastepredictors AT mavkovbojan asurveyoncomputationaltastepredictors AT stojceskifilip asurveyoncomputationaltastepredictors AT grassogianvito asurveyoncomputationaltastepredictors AT korfiatiaigli asurveyoncomputationaltastepredictors AT mavroudiseferina asurveyoncomputationaltastepredictors AT kalogerasathanasios asurveyoncomputationaltastepredictors AT alexakoschristos asurveyoncomputationaltastepredictors AT martosvanessa asurveyoncomputationaltastepredictors AT amorosodaria asurveyoncomputationaltastepredictors AT dibenedettogiacomo asurveyoncomputationaltastepredictors AT pigadario asurveyoncomputationaltastepredictors AT theofilatoskonstantinos asurveyoncomputationaltastepredictors AT deriumarcoagostino asurveyoncomputationaltastepredictors AT malavoltamarta surveyoncomputationaltastepredictors AT pallantelorenzo surveyoncomputationaltastepredictors AT mavkovbojan surveyoncomputationaltastepredictors AT stojceskifilip surveyoncomputationaltastepredictors AT grassogianvito surveyoncomputationaltastepredictors AT korfiatiaigli surveyoncomputationaltastepredictors AT mavroudiseferina surveyoncomputationaltastepredictors AT kalogerasathanasios surveyoncomputationaltastepredictors AT alexakoschristos surveyoncomputationaltastepredictors AT martosvanessa surveyoncomputationaltastepredictors AT amorosodaria surveyoncomputationaltastepredictors AT dibenedettogiacomo surveyoncomputationaltastepredictors AT pigadario surveyoncomputationaltastepredictors AT theofilatoskonstantinos surveyoncomputationaltastepredictors AT deriumarcoagostino surveyoncomputationaltastepredictors |