Cargando…
Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning
Genomewide association studies (GWAS) have identified a large number of loci associated with neuropsychiatric traits, however, understanding the molecular mechanisms underlying these loci remains difficult. To help prioritize causal variants and interpret their functions, computational methods have...
Autores principales: | Lai, Boqiao, Qian, Sheng, Zhang, Hanwei, Zhang, Siwei, Kozlova, Alena, Duan, Jubao, Xu, Jinbo, He, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135341/ https://www.ncbi.nlm.nih.gov/pubmed/35576194 http://dx.doi.org/10.1371/journal.pcbi.1010011 |
Ejemplares similares
-
DeepGWAS: Enhance GWAS Signals for Neuropsychiatric Disorders via Deep Neural Network
por: Li, Yun, et al.
Publicado: (2023) -
Sex-specific nicotine sensitization and imprinting of self-administration in rats inform GWAS findings on human addiction phenotypes
por: Kozlova, Alena, et al.
Publicado: (2021) -
Functional annotation of non-coding sequence variants
por: Ritchie, Graham R. S., et al.
Publicado: (2014) -
20.3 OPEN CHROMATIN ANALYSES INFORM FUNCTIONAL NONCODING GWAS VARIANTS IN HIPSC MODEL OF MENTAL DISORDERS
por: Duan, Jubao
Publicado: (2018) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021)