Cargando…
E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior
Learning analysis provides a new opportunity for the development of online education, and has received extensive attention from scholars at home and abroad. How to use data and models to predict learners’ academic success or failure and give teaching feedback in a timely manner is a core problem in...
Autores principales: | Qiu, Feiyue, Zhu, Lijia, Zhang, Guodao, Sheng, Xin, Ye, Mingtao, Xiang, Qifeng, Chen, Ping-Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140884/ https://www.ncbi.nlm.nih.gov/pubmed/35626605 http://dx.doi.org/10.3390/e24050722 |
Ejemplares similares
-
Predicting students’ performance in e-learning using learning process and behaviour data
por: Qiu, Feiyue, et al.
Publicado: (2022) -
SA-FEM: Combined Feature Selection and Feature Fusion for Students’ Performance Prediction
por: Ye, Mingtao, et al.
Publicado: (2022) -
Feature space learning model
por: Guan, Renchu, et al.
Publicado: (2018) -
Learning Modality Complementary Features with Mixed Attention Mechanism for RGB-T Tracking
por: Luo, Yang, et al.
Publicado: (2023) -
Medical Data Feature Learning Based on Probability and Depth Learning Mining: Model Development and Validation
por: Yang, Yuanlin, et al.
Publicado: (2021)