Cargando…

Time-varying graph representation learning via higher-order skip-gram with negative sampling

Representation learning models for graphs are a successful family of techniques that project nodes into feature spaces that can be exploited by other machine learning algorithms. Since many real-world networks are inherently dynamic, with interactions among nodes changing over time, these techniques...

Descripción completa

Detalles Bibliográficos
Autores principales: Piaggesi, Simone, Panisson, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143726/
https://www.ncbi.nlm.nih.gov/pubmed/35668814
http://dx.doi.org/10.1140/epjds/s13688-022-00344-8