Cargando…
Airborne Hyperspectral Imagery for Band Selection Using Moth–Flame Metaheuristic Optimization
In this research, we study a new metaheuristic algorithm called Moth–Flame Optimization (MFO) for hyperspectral band selection. With the hundreds of highly correlated narrow spectral bands, the number of training samples required to train a statistical classifier is high. Thus, the problem is to sel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144346/ https://www.ncbi.nlm.nih.gov/pubmed/35621891 http://dx.doi.org/10.3390/jimaging8050126 |