Cargando…
Airborne Hyperspectral Imagery for Band Selection Using Moth–Flame Metaheuristic Optimization
In this research, we study a new metaheuristic algorithm called Moth–Flame Optimization (MFO) for hyperspectral band selection. With the hundreds of highly correlated narrow spectral bands, the number of training samples required to train a statistical classifier is high. Thus, the problem is to sel...
Autores principales: | Anand, Raju, Samiaappan, Sathishkumar, Veni, Shanmugham, Worch, Ethan, Zhou, Meilun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144346/ https://www.ncbi.nlm.nih.gov/pubmed/35621891 http://dx.doi.org/10.3390/jimaging8050126 |
Ejemplares similares
-
Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data
por: Szekielda, Karl H., et al.
Publicado: (2009) -
Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea
por: Angelliaume, Sébastien, et al.
Publicado: (2017) -
Invocations ; The moth and the flame
por: Jarrett, Keith
Publicado: (1987) -
Data Clustering Using Moth-Flame Optimization Algorithm
por: Singh, Tribhuvan, et al.
Publicado: (2021) -
Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications
por: Sahoo, Saroj Kumar, et al.
Publicado: (2022)