Cargando…

A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum

The pharmaceutical industry has developed various highly effective semi-synthetic cephalosporins, which are generated by modifying the side chains of the core molecule 7-aminocephalosporanic acid (7-ACA). In industrial productions, the 7-ACA nucleus is obtained in vitro from cephalosporin C (CPC) by...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Xuemei, Lambertz, Jan, Dahlmann, Tim A., Nowaczyk, Marc M., König, Burghard, Kück, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144927/
https://www.ncbi.nlm.nih.gov/pubmed/35628706
http://dx.doi.org/10.3390/jof8050450
_version_ 1784716167686914048
author Lin, Xuemei
Lambertz, Jan
Dahlmann, Tim A.
Nowaczyk, Marc M.
König, Burghard
Kück, Ulrich
author_facet Lin, Xuemei
Lambertz, Jan
Dahlmann, Tim A.
Nowaczyk, Marc M.
König, Burghard
Kück, Ulrich
author_sort Lin, Xuemei
collection PubMed
description The pharmaceutical industry has developed various highly effective semi-synthetic cephalosporins, which are generated by modifying the side chains of the core molecule 7-aminocephalosporanic acid (7-ACA). In industrial productions, the 7-ACA nucleus is obtained in vitro from cephalosporin C (CPC) by chemical or enzymatic processes, which are waste intensive and associated with high production costs. Here, we used a transgenic in vivo approach to express bacterial genes for cephalosporin C acylase (CCA) in the CPC producer Acremonium chrysogenum. Western blot and mass spectrometry analyses verified that the heterologous enzymes are processed into α- and β-subunits in the fungal cell. Extensive HPLC analysis detected substrates and products of CCAs in both fungal mycelia and culture supernatants, with the highest amount of 7-ACA found in the latter. Using different incubation times, temperatures, and pH values, we explored the optimal conditions for the active bacterial acylase to convert CPC into 7-ACA in the culture supernatant. We calculated that the best transgenic fungal strains exhibit a one-step conversion rate of the bacterial acylase of 30%. Our findings can be considered a remarkable contribution to supporting future pharmaceutical manufacturing processes with reduced production costs.
format Online
Article
Text
id pubmed-9144927
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91449272022-05-29 A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum Lin, Xuemei Lambertz, Jan Dahlmann, Tim A. Nowaczyk, Marc M. König, Burghard Kück, Ulrich J Fungi (Basel) Article The pharmaceutical industry has developed various highly effective semi-synthetic cephalosporins, which are generated by modifying the side chains of the core molecule 7-aminocephalosporanic acid (7-ACA). In industrial productions, the 7-ACA nucleus is obtained in vitro from cephalosporin C (CPC) by chemical or enzymatic processes, which are waste intensive and associated with high production costs. Here, we used a transgenic in vivo approach to express bacterial genes for cephalosporin C acylase (CCA) in the CPC producer Acremonium chrysogenum. Western blot and mass spectrometry analyses verified that the heterologous enzymes are processed into α- and β-subunits in the fungal cell. Extensive HPLC analysis detected substrates and products of CCAs in both fungal mycelia and culture supernatants, with the highest amount of 7-ACA found in the latter. Using different incubation times, temperatures, and pH values, we explored the optimal conditions for the active bacterial acylase to convert CPC into 7-ACA in the culture supernatant. We calculated that the best transgenic fungal strains exhibit a one-step conversion rate of the bacterial acylase of 30%. Our findings can be considered a remarkable contribution to supporting future pharmaceutical manufacturing processes with reduced production costs. MDPI 2022-04-26 /pmc/articles/PMC9144927/ /pubmed/35628706 http://dx.doi.org/10.3390/jof8050450 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lin, Xuemei
Lambertz, Jan
Dahlmann, Tim A.
Nowaczyk, Marc M.
König, Burghard
Kück, Ulrich
A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title_full A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title_fullStr A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title_full_unstemmed A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title_short A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum
title_sort straightforward approach to synthesize 7-aminocephalosporanic acid in vivo in the cephalosporin c producer acremonium chrysogenum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144927/
https://www.ncbi.nlm.nih.gov/pubmed/35628706
http://dx.doi.org/10.3390/jof8050450
work_keys_str_mv AT linxuemei astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT lambertzjan astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT dahlmanntima astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT nowaczykmarcm astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT konigburghard astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT kuckulrich astraightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT linxuemei straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT lambertzjan straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT dahlmanntima straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT nowaczykmarcm straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT konigburghard straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum
AT kuckulrich straightforwardapproachtosynthesize7aminocephalosporanicacidinvivointhecephalosporincproduceracremoniumchrysogenum