Cargando…
A MEMS-Based High-Fineness Fiber-Optic Fabry–Perot Pressure Sensor for High-Temperature Application
In this paper, a high-fineness fiber-optic Fabry–Perot high-temperature pressure sensor, based on MEMS technology, is proposed and experimentally verified. The Faber–Perot cavity of the pressure sensor is formed by the anodic bonding of a sensitive silicon diaphragm and a Pyrex glass; a high-finenes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145377/ https://www.ncbi.nlm.nih.gov/pubmed/35630230 http://dx.doi.org/10.3390/mi13050763 |
Sumario: | In this paper, a high-fineness fiber-optic Fabry–Perot high-temperature pressure sensor, based on MEMS technology, is proposed and experimentally verified. The Faber–Perot cavity of the pressure sensor is formed by the anodic bonding of a sensitive silicon diaphragm and a Pyrex glass; a high-fineness interference signal is obtained by coating the interface surface with a high-reflection film, so as to simplify the signal demodulation system. The experimental results show that the pressure sensitivity of this sensor is 55.468 nm/MPa, and the temperature coefficient is 0.01859 nm/°C at 25~300 °C. The fiber-optic pressure sensor has the following advantages: high fineness, high temperature tolerance, high consistency and simple demodulation, resulting in a wide application prospect in the field of high-temperature pressure testing. |
---|